Nothing
test_that("estimate_partition_function works", {
set.seed(1)
alpha_vector <- seq(from = 0, to = 10, by = 0.5)
n_items <- 20
metrics <- c("footrule", "spearman", "kendall", "cayley", "hamming", "ulam")
expectations <- c(
0.4961490378154, 19.75045734511,
22.3471310441124, -9.13330233602348,
-78.559587447592, -10.9508829949516
)
names(expectations) <- metrics
for (m in metrics) {
fit <- estimate_partition_function(
method = "importance_sampling",
alpha_vector = alpha_vector,
n_items = n_items,
metric = m,
n_iterations = 1e3
)
expect_equal(fit[5, 2], expectations[[m]])
}
fit <- estimate_partition_function(
method = "asymptotic",
alpha_vector = alpha_vector,
n_items = n_items,
metric = "footrule",
n_iterations = 50
)
expect_equal(fit[4, 2], 0.0151144482198799)
fit <- estimate_partition_function(
method = "asymptotic",
alpha_vector = alpha_vector,
n_items = n_items,
metric = "spearman",
n_iterations = 50
)
expect_equal(fit[4, 2], -41.9129447085325)
})
test_that("estimate_partition_function works in parallel", {
cl <- parallel::makeCluster(2)
set.seed(1)
alpha_vector <- seq(from = 0, to = 10, by = 0.5)
fit <- estimate_partition_function(
method = "importance_sampling",
alpha_vector = alpha_vector,
n_items = 34,
metric = "spearman",
n_iterations = 1e3,
cl = cl
)
expect_equal(fit[3, 2], 140.846380226927)
parallel::stopCluster(cl)
mod <- compute_mallows(
data = setup_rank_data(t(replicate(3, sample(34)))),
model_options = set_model_options(metric = "spearman"),
compute_options = set_compute_options(nmc = 10),
pfun_estimate = fit
)
expect_s3_class(mod, "BayesMallows")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.