This package implements basic Algebra methods using parallel algorithms to be used in big data problems such as omic data analyses. The methods will accept objects as those designed to deal with big matrices in the Matrix package. The implemented methods will include:
Algebra
Statistical methods
To install BigDataStatMeth package we only have to run the following commands from the R command shell
```{r, install, eval=FALSE}
install.packages("devtools") library(devtools)
install_github("isglobal-brge/BigDataStatMeth@HEAD") library(BigDataStatMeth)
```
| | R Function | Delayed arrays | By blocks | Parallel | HDF5 | |--------------------------------------------------|:-------------------------------------------------------:|----------------|:---------:|----------|------| | Basic functions with vectors and matrices | | | | | | | Matrix Product | bdblockmult(…) / bdblockmult_hdf5(…) | ✔︎ | ✔︎ | ✔︎ | ✔︎ | | Sparse Matrix Product | bdblockmult_sparse(…) / bdblockmult_sparse_hdf5(…) | | | | ✔︎ | | Matrix product with its transpose | bdCrossprod(…) / bdtCrossprod(…) / bdCrossprod_hdf5(…) / bdtCrossprod_hdf5(…) | ✔︎ | ✔︎ | ✔︎ | ✔︎ | | Matrix - Matrix weighted product (XWXt, XtWX) | bdtCrossprod_Weighted(…) / bdCrossprod_Weighted(…) | ✔︎ | ✔︎ | ✔︎ | ✔︎ | | Matrix - vector weighted product (XwXt, XtwX) | bdwproduct(…) / bdScalarwproduct(…) | ✔︎ | | | | | Matrix vector product | bdblockmult_vector(…) | ✔︎ | ✔︎ | ✔︎ | | | Data Normalization (center, scale and both) | bdNormalize_Data(…) / bdNormalize_hdf5(…) | ✔︎ | ✔︎ | | ✔︎ | | Other functions | | | | | | | Vector sum | bdparallelVectorSum(…) | | | ✔︎ | | | Pow(2) vector elements | bdparallelpow2(…) | | | ✔︎ | | | Lineal Algebra Functions | | | | | | | SVD matrix decomposition | bdSVD(…) / bdSVD_hdf5(…) | ✔︎ | ✔︎ | ✔︎ | ✔︎ | | QR matrix decomposition | bdQR(…) | ✔︎ | | | | | Cholesky decomposition | bdInvCholesky(…) | ✔︎ | | | | | Matrix Pseudoinverse | bdpseudoinv(…) | ✔︎ | | | | | Solve matrix equation (A * X = B ) | bdSolve(…) | ✔︎ | | | | | Data Analysis | | | | | | | Principal Components Analysis (PCA) | bdPCA_hdf5(…) | | ✔︎ | | ✔︎ | | MLR-MR (Linear Regression Big Data) | bdlm_paral(…) | ✔︎ | ✔︎ | ✔︎ | | | HDF5 data files Utils | | | | | | | Remove rows or columns with hight missing values | bdRemovelowdata(…) | | ✔︎ | | ✔︎ | | Impute missing data | bdImpute_snps_hdf5(…) | | ✔︎ | | ✔︎ | | Create hdf5 data file with one dataset inside | bdCreate_hdf5_matrix_file(…) | | | | ✔︎ | | Add one dataset in hdf5 data file | bdAdd_hdf5_matrix(…) | | | | ✔︎ | | Split an hdf5 dataset in small datasets | bdSplit_matrix_hdf5(…) | | | | ✔︎ | | Reduce multiple datasets applying a function | bdReduce_matrix_hdf5(…) | | | | ✔︎ | | Merge multiple datasets by rows or columns | bdBind_hdf5(…) | | | | ✔︎ | | Apply a function to multiple datasets | bdapply_Function_hdf5(…) | | | | ✔︎ | | Get a list with all datasets inside a group | bdgetDatasetsList_hdf5(…) | | | | ✔︎ | | Remove one dataset from hdf5 data file | bdRemove_hdf5_element(…) | | | | ✔︎ | | Import data from text file or url to HDF5 | bdImportData_hdf5(…) | | ✔ | | ✔︎ | | Develop methods with hdf5 - examples | | | | | | | Perform QR decomposition by blocks in hdf5 | getQRbyBlocks(…) | | ✔ | | ✔︎ | | Perform CCA by blocks in hdf5 | bdCCA_hdf5(…) | | ✔ | | ✔︎ |
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.