Description Usage Arguments Value See Also Examples
View source: R/cmat.star.BinOrdNN.R
The function computes the correlations of intermediate multivariate normal data prior to subsequent dichotomization (for binary variables), ordinalization (for ordinal variables), and transformation (for continuous variables)
| 1 | cmat.star.BinOrdNN(plist, skew.vec, kurto.vec, no.bin, no.ord, no.NN, CorrMat)
 | 
| plist | A list of probability vectors corresponding to each binary/ordinal variable. The i-th element of  | 
| skew.vec | The skewness vector for continuous variables. | 
| kurto.vec | The kurtosis vector for continuous variables. | 
| no.bin | Number of binary variables. | 
| no.ord | Number of ordinal variables. | 
| no.NN | Number of continuous variables. | 
| CorrMat | The target correlation matrix which must be positive definite and within the valid limits. | 
An intermediate correlation of size (no.bin + no.ord + no.NN)*(no.bin + no.ord + no.NN)
validate.target.cormat.BinOrdNN, IntermediateNonNor, IntermediateONN
| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | ## Not run:
no.bin <- 1
no.ord <- 2
no.NN <- 4
q <- no.bin + no.ord + no.NN
set.seed(54321)
Sigma <- diag(q)
Sigma[lower.tri(Sigma)] <- runif((q*(q-1)/2),-0.4,0.4)
Sigma <- Sigma + t(Sigma)
diag(Sigma) <- 1
marginal <- list(0.3, cumsum(c(0.30, 0.40) ), cumsum(c(0.4, 0.2, 0.3) ) )
cmat.star <- cmat.star.BinOrdNN(plist=marginal, skew.vec=c(1,2,2,3), 
kurto.vec=c(2,7,25,25),no.bin=1, no.ord=2, no.NN=4, CorrMat=Sigma) 
## End(Not run)
 | 
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.