Description Usage Arguments Value References See Also Examples
The function simulates a sample of size n
from a multivariate binary, ordinal and continuous variables with intermediate correlation matrix cmat.star
, and pre-specified marginal distributions.
1 2 | genBinOrdNN(n, plist, mean.vec, var.vec, skew.vec, kurto.vec, no.bin, no.ord,
no.NN, cmat.star)
|
n |
Number of rows. |
plist |
A list of probability vectors corresponding to each binary/ordinal variable. The i-th element of |
mean.vec |
Mean vector for continuous variables. |
var.vec |
Variance vector for continuous variables |
skew.vec |
The skewness vector for continuous variables. |
kurto.vec |
The kurtosis vector for continuous variables. |
no.bin |
Number of binary variables. |
no.ord |
Number of ordinal variables. |
no.NN |
Number of continuous variables. |
cmat.star |
The intermediate correlation matrix obtained from |
A matrix of size n*(no.bin + no.ord + no.NN)
, of which the first no.bin
columns are binary variables, the next no.ord
columns are ordinal variables, and the last no.NN
columns are continuous variables.
Demirtas, H., Hedeker, D., and Mermelstein, R.J. (2012). Simulation of massive public health data by power polynomials. Statistics in Medicine, 31(27), 3337-3346.
Demirtas, H. and Yavuz Y. (2015). Concurrent generation of ordinal and normal data. Journal of Biopharmaceutical Statistics, 25(4), 635-650.
Vale, C.D., and Maurelli, V.A. (1983). Simulating multivariate nonnormal distributions. Psychometrika, 48(3), 465-471.
cmat.star.BinOrdNN
, Fleishman.coef.NN
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | ## Not run:
set.seed(54321)
no.bin <- 1
no.ord <- 1
no.NN <- 4
q <- no.bin + no.ord + no.NN
marginal <- list(0.4, cumsum(c(0.4, 0.2, 0.3)))
skewness.vec <- c(2,0,-0.4677,0.6325)
kurtosis.vec <- c(6,-0.5455,-0.3750,0.6)
corr.mat <- matrix(c(1.0,-0.3,-0.3,-0.3,-0.3,-0.3,
-0.3, 1.0,-0.3,-0.3,-0.3,-0.3,
-0.3,-0.3, 1.0, 0.4, 0.5, 0.6,
-0.3,-0.3, 0.4, 1.0, 0.7, 0.8,
-0.3,-0.3, 0.5, 0.7, 1.0, 0.9,
-0.3,-0.3, 0.6, 0.8, 0.9, 1.0),
q,byrow=TRUE)
corr.mat.star <- cmat.star.BinOrdNN(plist=marginal, skew.vec=skewness.vec,
kurto.vec=kurtosis.vec, no.bin=1, no.ord=1, no.NN=4, CorrMat=corr.mat)
sim.data <- genBinOrdNN(n=100000, plist=marginal, mean.vec=c(2,3,4,5),
var.vec=c(3,5,10,20), skew.vec=skewness.vec, kurto.vec=kurtosis.vec,
no.bin=1, no.ord=1, no.NN=4, cmat.star=corr.mat.star)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.