ensemble.spatialBlock | R Documentation |
The functions internally calls blockCV::spatialBlock and blockCV::envBlock. Syntax is very similar to that of BiodiversityR::ensemble.calibrate.weights.
ensemble.spatialBlock(x = NULL, p = NULL,
a = NULL, an = 1000, EPSG=NULL,
excludep = FALSE, target.groups = FALSE, k = 4,
factors = NULL,
theRange = NULL, return.object = FALSE, ...)
ensemble.envBlock(x = NULL, p = NULL,
a = NULL, an = 1000, EPSG=NULL,
excludep = FALSE, target.groups = FALSE, k = 4,
factors = NULL,
return.object = FALSE, ...)
x |
RasterStack object ( |
p |
presence points used for calibrating the suitability models, typically available in 2-column (lon, lat) dataframe; see also |
a |
background points used for calibrating the suitability models, typically available in 2-column (lon, lat) dataframe; see also |
an |
number of background points for calibration to be selected with |
EPSG |
EPSG number (see https://spatialreference.org/) to be assigned internally to the coordinate reference system of the locations via |
excludep |
parameter that indicates (if |
target.groups |
Parameter that indicates (if |
k |
Integer value. The number of desired folds for cross-validation. The default is |
factors |
vector that indicates which variables are factors; see also |
theRange |
Numeric value of the specified range by which blocks are created and training/testing data are separated. This distance should be in metres. See also |
return.object |
If |
... |
Other arguments to pass to |
The functions internally call spatialBlock
or envBlock
.
The result of the function includes a list (k
) with following elements. This list can be directly imported into ensemble.calibrate.weights
, but only elements groupp
and groupa
will be used.
- p
: Presence locations, created by ensemble.calibrate.models
where points with missing data were excluded and possibly points were added for missing factor levels
- a
: Background locations, created by ensemble.calibrate.models
where points with missing data were excluded and possibly points were added for missing factor levels
- groupp
: k-fold identities for the presence locations
- groupa
: k-fold identities for the background locations
Optionally the function also returns elements block.object
and speciesData
. These can be used to visualize data with foldExplorer
.
The function returns a list with the following elements:.
k |
A list with data on folds that can be directly used by |
block.object |
the results of |
speciesData |
a |
Roeland Kindt (World Agroforestry Centre)
Roberts et al., 2017. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 40: 913-929.
## Not run:
library(blockCV)
library(sf)
# get predictor variables
library(dismo)
predictor.files <- list.files(path=paste(system.file(package="dismo"), '/ex', sep=''),
pattern='grd', full.names=TRUE)
predictors <- stack(predictor.files)
# subset based on Variance Inflation Factors
predictors <- subset(predictors, subset=c("bio5", "bio6",
"bio16", "bio17"))
predictors
predictors@title <- "base"
# presence points
presence_file <- paste(system.file(package="dismo"), '/ex/bradypus.csv', sep='')
pres <- read.table(presence_file, header=TRUE, sep=',')[, -1]
# choose background points
background <- randomPoints(predictors, n=1000, p=pres, excludep=T, extf=1.00)
background <- data.frame(background)
colnames(background)=c('lon', 'lat')
# spatial blocking with square blocks of 1000 km and minimum 20 points in each categor
# fails if EPSG is not assigned
block.data <- ensemble.spatialBlock(x=predictors, p=pres, a=background,
EPSG=NULL,
showBlocks=F, theRange=1000000, k=4, numLimit=20, iteration=1000, return.object=T)
block.data <- ensemble.spatialBlock(x=predictors, p=pres, a=background,
EPSG=4326,
showBlocks=F, theRange=1000000, k=4, numLimit=20, iteration=1000, return.object=T)
# explore the results
foldExplorer(blocks=block.data$block.object, rasterLayer=predictors,
speciesData=block.data$speciesData)
# apply in calibration of ensemble weights
# make sure that folds apply to subset of points
p.spatial <- block.data$k$p
a.spatial <- block.data$k$a
k.spatial <- block.data$k
ensemble.w1 <- ensemble.calibrate.weights(x=predictors,
p=p.spatial, a=a.spatial, k=k.spatial,
species.name="Bradypus",
SINK=FALSE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=0, CF=1,
GLM=1, GLMSTEP=0, GAM=1, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=1, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=0, MAHAL=0, MAHAL01=0,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
Yweights="BIOMOD",
formulae.defaults=TRUE)
# confirm that correct folds were used
all.equal(ensemble.w1$groupp, block.data$k$groupp)
all.equal(ensemble.w1$groupa, block.data$k$groupa)
# environmental blocking with minimum 5 points in each category
block.data2 <- ensemble.envBlock(x=predictors, p=pres, a=background,
factors="biome",
k=4, numLimit=5, return.object=T)
# explore the results
foldExplorer(blocks=block.data2$block.object, rasterLayer=predictors,
speciesData=block.data2$speciesData)
# apply in calibration of ensemble weights
# make sure that folds apply to subset of points
p.env <- block.data2$k$p
a.env <- block.data2$k$a
k.env <- block.data2$k
ensemble.w2 <- ensemble.calibrate.weights(x=predictors,
p=p.env, a=a.env, k=k.env,
species.name="Bradypus",
SINK=FALSE, PROBIT=TRUE,
MAXENT=0, MAXNET=1, MAXLIKE=1, GBM=1, GBMSTEP=0, RF=0, CF=1,
GLM=1, GLMSTEP=0, GAM=1, GAMSTEP=0, MGCV=0, MGCVFIX=0,
EARTH=0, RPART=0, NNET=1, FDA=0, SVM=0, SVME=0, GLMNET=0,
BIOCLIM.O=1, BIOCLIM=1, DOMAIN=0, MAHAL=0, MAHAL01=0,
ENSEMBLE.tune=TRUE,
ENSEMBLE.best=0, ENSEMBLE.exponent=c(1, 2, 3),
ENSEMBLE.min=0.7,
factors="biome",
Yweights="BIOMOD",
formulae.defaults=TRUE)
# confirm that correct folds were used
all.equal(ensemble.w2$groupp, block.data2$k$groupp)
all.equal(ensemble.w2$groupa, block.data2$k$groupa)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.