ensemble.envirem.masterstack | R Documentation |
envirem
package for data.frames.
Function generateEnvirem
uses RasterStack (stack
) objects as input and also generates outputs in the same format. The functions described here can be used to generate the bioclimatic variables for data.frames
while using envirem
functions internally. This feature can be useful in situations where models are calibrated with higher resolution data, but where maps will only be generated in lower resolutions, thus avoiding the need to generate the higher resolution envirem layers first.
ensemble.envirem.masterstack(
x,
precipstack,
tmaxstack, tminstack,
tmeanstack = NULL,
envirem3 = TRUE)
ensemble.envirem.solradstack(
x, solrad,
envirem3 = TRUE)
ensemble.envirem.run(
masterstack, solradstack,
var = "all", ...)
x |
Point locations provided in 2-column (eg, LON-LAT) format. |
precipstack |
RasterStack object ( |
tmaxstack |
RasterStack object ( |
tminstack |
RasterStack object ( |
tmeanstack |
RasterStack object ( |
envirem3 |
generate a SpatRaster object ( |
solrad |
RasterStack object ( |
masterstack |
RasterStack object ( |
solradstack |
RasterStack object ( |
var |
Names of bioclimatic variables to be created; see: |
... |
Other arguments for |
The objective of these functions is to expand a data.frame of explanatory variables that will be used for calibrating species distribution models with bioclimatic variables that are generated by the envirem package (See details in generateEnvirem
).
It is important that monthly values are sorted sequentially (January - December) as the ensemble.envirem.masterstack
and ensemble.envirem.solradstack
functions expect the inputs to be sorted in this order.
Function ensemble.envirem.solradstack
requires monthly extraterrestrial solar radiation layers at the same resolution as the climatic layers. It is possible, however, to also calculate these values directly for point observation data as shown below in the examples.
Function ensemble.envirem.run
returns a data.frame with bioclimatic variables for each point location.
Roeland Kindt (World Agroforestry Centre)
Title P.O., Bemmels J.B. 2018. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41: 291-307.
Kindt R. 2023. TreeGOER: A database with globally observed environmental ranges for 48,129 tree species. Global Change Biology. \Sexpr[results=rd]{tools:::Rd_expr_doi("10.1111/gcb.16914")}
generateEnvirem
, ensemble.calibrate.models
, ensemble.calibrate.weights
## Not run:
# Based on examples in envirem package for envirem::generateEnvirem
# Modified Sep-2023 due to change in function name in envirem
library(terra)
library(envirem)
# Find example rasters
rasterFiles <- list.files(system.file('extdata', package='envirem'),
full.names=TRUE)
precip.files <- rasterFiles[grepl(pattern="prec_",
x=rasterFiles)]
precip.files <- precip.files[c(1, 5:12, 2:4)]
precip.stack <- terra::rast(precip.files)
precip.stack
names(precip.stack)
tmin.files <- rasterFiles[grepl(pattern="tmin_",
x=rasterFiles)]
tmin.files <- tmin.files[c(1, 5:12, 2:4)]
tmin.stack <- terra::rast(tmin.files)
tmin.stack
names(tmin.stack)
tmax.files <- rasterFiles[grepl(pattern="tmax_",
x=rasterFiles)]
tmax.files <- tmax.files[c(1, 5:12, 2:4)]
tmax.stack <- terra::rast(tmax.files)
tmax.stack
names(tmax.stack)
tmean.files <- rasterFiles[grepl(pattern="tmean_",
x=rasterFiles)]
tmean.files <- tmean.files[c(1, 5:12, 2:4)]
tmean.stack <- terra::rast(tmean.files)
tmean.stack
names(tmean.stack)
# Random locations
locs <- dismo::randomPoints(raster::stack(precip.stack[[1]]), n=50)
# Climatic data
master.input <- ensemble.envirem.masterstack(x=locs,
precipstack=precip.stack,
tmaxstack=tmax.stack,
tminstack=tmin.stack,
tmeanstack=tmean.stack)
# Calculate solar radiation for 1975
# (Use other midpoint for the 1970-2000 WorldClim 2.1 baseline)
solrad.stack <- ETsolradRasters(precip.stack[[1]],
year = 1975-1950,
outputDir = NULL)
solrad.input <- ensemble.envirem.solradstack(x=locs,
solrad=solrad.stack)
# Obtain the envirem bioclimatic data
envirem.data1 <- ensemble.envirem.run(masterstack=master.input,
solradstack=solrad.input,
tempScale=10)
# Generate all the envirem layers, then extract
# See envirem package for envirem::generateEnvirem
worldclim <- rast(c(precip.files, tmax.files, tmin.files, tmean.files))
names(worldclim)
assignNames(precip = 'prec_##')
# generate all possible envirem variables
envirem.stack <- generateEnvirem(worldclim, solrad.stack, var='all', tempScale = 10)
# set back to defaults
assignNames(reset = TRUE)
envirem.data2 <- extract(envirem.stack, y=locs)
# compare
envirem.data1 - envirem.data2
# Calculate extraterrestrial solar radiation for point observations
solrad1 <- extract(solrad.stack, y=locs)
solrad2 <- array(dim=c(nrow(locs), 12))
for (i in 1:nrow(locs)) {
lat.i <- locs[i, 2]
for (m in 1:12) {
solrad2[i, m] <- envirem:::calcSolRad(year=1975-1950,
lat=lat.i,
month=m)
}
}
solrad1 - solrad2
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.