Nothing
LONBVSS_SI <- function(y,X1,X2,X3,J,q,max.steps,robust,quant,sparse){
n = nrow(X2)
n1 =length(J)
J2 = c()
for(i in 1:n1){
z_i = cbind(rep(1,J[i]),c(1:J[i]))
c = ncol(z_i)
ata = stats::rnorm(c,0,1)
J1 = kronecker(t(ata),z_i)
J2 = rbind(J2,J1)
}
J3 = matrix(c(1,0,0,0,0,1,0,0,0,0,0,1),nrow=4)
C = J2%*%J3
m = ncol(X2)
q1 = ncol(X1)
hatAlpha = rep(1,q1) ## coeff for intercept
hatBeta =rep(1,m) ## coeff for constant ## coeff for varying part
hatEta = matrix(rep(1,m*(q-1)),ncol=m)
hatAta = rep(1,3)
hatBeta1 = rep(0,m)
hatEta1 = matrix(rep(0,m*(q-1)),ncol=m)
hatBeta1 = hatBeta1+10^-5
hatEta1 = hatEta1+10^-5
xi1 = (1-2*quant)/(quant*(1-quant))
xi2 = sqrt(2/(quant*(1-quant)))
hatTau = 1
hatV = rep(1,n)
hatEtaSq1 = 1
hatEtaSq2 = 1
hatEtaSq3 = 1
hatEtaSq4 = 1
hatSg1 = rep(1, m)
hatSg2 = rep(1, m)
hatSg3 = 1
hatSg4 = 1
hatPiBeta = 0.5
hatPiEta = 0.5
hatPi3 = 0.5
hatPi4 = 0.5
invSigAlpha0 = diag(10^-3, q1)
r1=r2=a=b=sh1=sh0=1
r3 =1
r4 =1
hatEta2 = rep(1,m*(q-1))
hatInvTauSq1=rep(0.1,m)
hatInvTauSq22=rep(0.1,m)
hatInvTauSq3=0.1
hatInvTauSq4=0.1
hatLambdaSqStar1=1
hatLambdaSqStar2=1
hatLambdaSqStar3=1
hatLambdaSqStar4=1
hatSigmaSq=1
a0=1
b0=1.5
aStar=1
bStar=1.5
a1=1
b1=1.5
a2=1
b2=1.5
alpha=0.2
gamma=0.1
mu0=1
nu0=1
muStar=1
nuStar=1
mu1=1
nu1=1
mu2=1
nu2=1
max.steps=10000
invSigAlpha1 = rep(10^-3,q1)
debugging=FALSE
progress = ifelse(debugging, 10^(floor(log10(max.steps))-1), 0)
if(robust){
fit=switch (sparse,
"TRUE" = RBVSS_SI(y,X1,X2,X3,C,max.steps,q,hatBeta,hatEta,hatAlpha,hatAta,hatTau,hatV,hatSg1,hatSg2,hatSg3,hatSg4,invSigAlpha0,hatPiBeta,hatPiEta,hatPi3,hatPi4,hatEtaSq1,hatEtaSq2,hatEtaSq3,hatEtaSq4,xi1,xi2,r1,r2,r3,r4,a,b,sh1,sh0,progress),
"FALSE" = RBV_SI(y,X1,X2,X3,C,max.steps,q,hatBeta1,hatEta1,hatAlpha,hatAta,hatTau,hatV,hatSg1,hatSg2,hatSg3,hatSg4,invSigAlpha0,hatPi3,hatPi4,hatEtaSq1,hatEtaSq2,hatEtaSq3,hatEtaSq4,xi1,xi2,r1,r2,r3,r4,a,b,sh1,sh0,progress)
)
}else{
fit=switch (sparse,
"TRUE" = BVSS_SI(y,X1,X2,X3,C,m,q,max.steps,hatAlpha,hatBeta,hatAta,hatEta2,invSigAlpha1,hatInvTauSq1,hatInvTauSq22,hatInvTauSq3,hatInvTauSq4,hatPiBeta,hatPiEta,hatPi3,hatPi4,hatLambdaSqStar1,hatLambdaSqStar2,hatLambdaSqStar3,hatLambdaSqStar4,hatSigmaSq,a0,b0,aStar,bStar,a1,b1,a2,b2,alpha,gamma,mu0,muStar,mu1,mu2,nu0,nuStar,nu1,nu2,progress) ,
"FALSE" = BV_SI(y,X1,X2,X3,C,m,q,max.steps,hatAlpha,hatBeta,hatEta2,hatAta,invSigAlpha1,hatInvTauSq1,hatInvTauSq22,hatInvTauSq3,hatInvTauSq4,hatPi3,hatPi4,hatLambdaSqStar1,hatLambdaSqStar2,hatLambdaSqStar3,hatLambdaSqStar4,hatSigmaSq,a0,b0,aStar,bStar,a1,b1,a2,b2,alpha,gamma,mu1,mu2,nu1,nu2,progress)
)
}
if(sparse){
GS.phi = fit$GS.tRsRs
}else{
GS.phi = NULL
}
out = list(posterior =list(GS.alpha = fit$GS.alpha,GS.phi = GS.phi,GS.beta = fit$GS.beta,GS.eta = fit$GS.eta))
out
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.