Nothing
#' Identify nonzero individual-level partial correlations
#'
#' Identify nonzero individual-level partial correlations in time series data
#' by controlling the rate of the false discovery proportion (FDP) exceeding \eqn{c0}
#' at \eqn{\alpha}, considering time dependence.
#' Input an \code{indEst} class object returned by \code{\link{individual.est}} or \code{\link{population.est}}.
#' \cr
#' \cr
#'
#'@param indEst An \code{indEst} class object.
#'@param alpha significance level, default value is \code{0.05}.
#'@param c0 threshold of the exceedance rate of FDP,
#'default value is \code{0.1}.
#'The choice of \code{c0} depends on the empirical problem. A smaller value of \code{c0} will
#'reduce false positives, but it may also cost more false negatives.
#'@param targetSet a two-column matrix. Each row contains two index corresponding to a pair of variables of interest.
#'If \code{NULL}, any pair of two variables is considered to be of interest.
#'@param MBT times of multiplier bootstrap, default value is \code{3000}.
#'@param simplify a logical indicating whether results should be simplified if possible.
#'
#'@return If \code{simplify} is \code{FALSE}, a \eqn{p*p} matrix with values 0 or 1 is returned.
#'If the j-th row and k-th column of the matrix is 1,
#'then the partial correlation coefficient between
#'the j-th variable and the k-th variable is identified to be nonzero.
#'
#'And if \code{simplify} is \code{TRUE}, a two-column matrix is returned,
#'indicating the row index and the column index of recovered nonzero partial correlations.
#'We only retain the results which the row index is less than the column index.
#'Those with larger test statistics are sorted first.
#'
#'@seealso \code{\link{population.est}} for making inferences on one individual in the population.
#'
#'@examples
#' ## Quick example for the individual-level inference
#' data(indsim)
#' # estimating partial correlation coefficients by scaled lasso
#' pc = individual.est(indsim)
#' # conducting hypothesis test
#' Res = individual.test(pc)
#'
#' @references
#' Qiu Y. and Zhou X. (2021).
#' Inference on multi-level partial correlations
#' based on multi-subject time series data,
#' \emph{Journal of the American Statistical Association}, 00, 1-15.
individual.test <- function(indEst, alpha = 0.05, c0 = 0.1, targetSet = NULL, MBT = 3000, simplify = !is.null(targetSet)){
force(simplify)
if (!inherits(indEst, 'indEst'))
stop("The argument indEst requires an 'indEst' class input!\n")
Est=indEst$coef
BTAllcenter = indEst$asym.ex
n = nrow(BTAllcenter)
p = nrow(Est)
Mp = p * (p - 1) / 2
if (is.null(targetSet)){
targetSet = lower.tri(Est)
index = 1 : Mp
} else {
simplify = TRUE
targetSet = normalize.set(targetSet, p)
index = (2 * p - targetSet[, 1]) * (targetSet[, 1] - 1) / 2 + targetSet[, 2] - targetSet[, 1]
}
NumAll = c()
DenAll = c()
for(i in 1 : Mp){
AR1 = ar(BTAllcenter[, i], aic = FALSE, order.max = 1)
rhoEst = AR1$ar
sigma2Est = AR1$var.pred
NumAll[i] = 4 * (rhoEst * sigma2Est)^2 / (1 - rhoEst)^8
DenAll[i] = sigma2Est^2 / (1 - rhoEst)^4
}
a2All = sum(NumAll) / sum(DenAll)
bandwidthAll = 1.3221 * (a2All * n)^(0.2)
BTcovAll = matrix(0, n, n)
for (i in 1 : n){
for (j in 1 : n){
BTcovAll[i, j] = QS(abs(i - j) / bandwidthAll)
}
}
BTAllsim = matrix(0, Mp, MBT)
for (i in 1 : MBT){
temp = mvrnorm(1, rep(0, n), BTcovAll)
BTAllsim[, i] = (n)^(-0.5) * colSums(temp * BTAllcenter)
}
WdiagAllEmp = colSums(BTAllcenter ^ 2) / n
TestAllstandard = WdiagAllEmp^(-1/2) * Est[lower.tri(Est)]
BTAllsim0 = WdiagAllEmp^(-1/2) * BTAllsim
SignalID=c()
TestPro = Est[targetSet]
TestProstandard = TestAllstandard[index]
BTPro = abs(BTAllsim0)[index, ]
repeat{
PCmaxIndex = which.max(abs(TestProstandard))
SignalIDtemp = which(Est == TestPro[PCmaxIndex], arr.ind = T)
SignalID = rbind(SignalID, SignalIDtemp)
TestPro = TestPro[-PCmaxIndex]
BTPro = BTPro[-PCmaxIndex, ]
TestProstandard = TestProstandard[-PCmaxIndex]
TestStatPro = sqrt(n) * max(abs(TestProstandard))
BTAllsimPro = apply(BTPro, 2, max)
QPro = sort(BTAllsimPro)[(1 - alpha) * MBT]
if (TestStatPro < QPro) break
}
aug = floor(c0 * dim(SignalID)[1] / (2 * (1 - c0)))
if (aug > 0){
PCmaxIndex = order(-abs(TestProstandard))[1 : aug]
for (q in 1 : length(PCmaxIndex)){
SignalIDtemp = which(Est == TestPro[PCmaxIndex[q]], arr.ind = TRUE)
SignalID = rbind(SignalID, SignalIDtemp)
}
}
if (simplify) return(subset(SignalID, SignalID[,1] < SignalID[,2]))
recovery = diag(rep(1, p))
recovery[SignalID[,1]+(SignalID[,2]-1)*p]=1
return(recovery)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.