bivariate.mixalg | R Documentation |
Function
bivariate.mixalg(obs1, obs2, type, data = NULL,
var1, var2, corr, lambda1, lambda2,
p,startk, numiter=5000, acc=1.e-7, class)
obs1 |
the first column of the observations |
obs2 |
the second column of the observations |
type |
kind of data |
data |
an optional data frame |
var1 |
Variance of the first column of the observations(except meta-analysis) |
var2 |
Variance of the second column of the observations (except meta-analysis) |
corr |
correlation coefficient |
lambda1 |
Means of the first column of the observations |
lambda2 |
Means of the second column of the observations |
p |
Probability |
startk |
starting/maximal number of components. This number will be used to compute the grid in the VEM. Default is 20. |
numiter |
parameter to control the maximal number of iterations in the VEM and EM loops. Default is 5000. |
acc |
convergence criterion. Default is 1.e-7 |
class |
classification of studies |
## Not run:
#1.EM and classification for bivariate data
#Examples
data(rs12363681)
test <- bivariate.mixalg(obs1=x, obs2=y, type="bi",
lambda1=0, lambda2=0, p=0,
data=rs12363681, startk=20, class="TRUE")
#scatter plot with ellipse
plot(test)
#scatter plot without ellipse
plot(test, ellipse = FALSE)
#2.EM and classification for meta data
#Examples
data(CT)
bivariate.mixalg(obs1=logitTPR, obs2=logitTNR,
var1=varlogitTPR, var2=varlogitTNR,
type="meta", lambda1=0, lambda2=0,
p=0,data=CT,startk=20,class="TRUE")
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.