Nothing
## ----setup, include=FALSE-----------------------------------------------------
knitr::opts_chunk$set(echo = TRUE, message = FALSE, warning = FALSE)
## ----ffs-parallel-unix, eval = FALSE------------------------------------------
# data("splotdata")
# spatial_cv = CreateSpacetimeFolds(splotdata, spacevar = "Biome", k = 5)
# ctrl <- trainControl(method="cv",index = spatial_cv$index)
#
# ffsmodel <- ffs(predictors = splotdata[,6:16],
# response = splotdata$Species_richness,
# tuneLength = 1,
# method = "rf",
# trControl = ctrl,
# ntree = 20,
# seed = 1,
# cores = 4)
## ----parallel-cv, eval = FALSE------------------------------------------------
# library(doParallel)
#
# data("splotdata")
# spatial_cv = CreateSpacetimeFolds(splotdata, spacevar = "Biome", k = 4)
# ctrl <- trainControl(method="cv",index = spatial_cv$index)
#
# cl <- makeCluster(4)
# registerDoParallel(cl)
# ffsmodel <- ffs(predictors = splotdata[,6:16],
# response = splotdata$Species_richness,
# tuneLength = 4,
# method = "rf",
# trControl = ctrl,
# ntree = 20,
# seed = 1,
# cores = 1)
# stopCluster(cl)
#
## ----ffs-ranger, eval = FALSE-------------------------------------------------
#
# ffsmodel <- ffs(predictors = splotdata[,6:16],
# response = splotdata$Species_richness,
# method = "ranger")
#
## ----message = FALSE, warning=FALSE-------------------------------------------
library(CAST)
library(caret)
library(terra)
library(sf)
data("splotdata")
predictors <- rast(system.file("extdata","predictors_chile.tif",package="CAST"))
splotdata <- st_drop_geometry(splotdata)
## ----message = FALSE, warning=FALSE-------------------------------------------
set.seed(10)
model <- train(splotdata[,names(predictors)],
splotdata$Species_richness,
method="rf",
tuneLength = 1,
importance=TRUE,
ntrees = 20,
trControl = trainControl(method="cv"), number = 5)
prediction <- predict(predictors, model, na.rm=TRUE)
## -----------------------------------------------------------------------------
tdi = trainDI(model, verbose = FALSE)
print(tdi)
class(tdi)
str(tdi)
## ----eval = FALSE-------------------------------------------------------------
# # you can save the trainDI object for later application
# saveRDS(tdi, "path/to/file")
## ----fig.show="hold", out.width="30%"-----------------------------------------
r1 = crop(predictors, c(-75.66667, -67, -30, -17.58333))
r2 = crop(predictors, c(-75.66667, -67, -45, -30))
r3 = crop(predictors, c(-75.66667, -67, -55.58333, -45))
plot(r1[[1]],main = "Tile 1")
plot(r2[[1]],main = "Tile 2")
plot(r3[[1]],main = "Tile 3")
## ----fig.show="hold", out.width="30%"-----------------------------------------
aoa_r1 = aoa(newdata = r1, trainDI = tdi)
plot(r1[[1]], main = "Tile 1: Predictors")
plot(aoa_r1$DI, main = "Tile 1: DI")
plot(aoa_r1$AOA, main = "Tile 1: AOA")
## ----eval = FALSE-------------------------------------------------------------
#
# library(parallel)
#
# tiles_aoa = mclapply(list(r1, r2, r3), function(tile){
# aoa(newdata = tile, trainDI = tdi)
#
# }, mc.cores = 3)
#
## ----echo = FALSE-------------------------------------------------------------
tiles_aoa = lapply(list(r1, r2, r3), function(tile){
aoa(newdata = tile, trainDI = tdi)
})
## ----fig.show="hold", out.width="30%"-----------------------------------------
plot(tiles_aoa[[1]]$AOA, main = "Tile 1")
plot(tiles_aoa[[2]]$AOA, main = "Tile 2")
plot(tiles_aoa[[3]]$AOA, main = "Tile 3")
## ----eval = FALSE-------------------------------------------------------------
# # Simple Example Code for raster tiles on the hard drive
#
# tiles = list.files("path/to/tiles", full.names = TRUE)
#
# tiles_aoa = mclapply(tiles, function(tile){
# current = terra::rast(tile)
# aoa(newdata = current, trainDI = model_random_trainDI)
#
# }, mc.cores = 3)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.