Description Usage Arguments Value Examples
View source: R/CDFtestingSuite.R
Applies diagnostic functions to a single dpCDF, and only
releases a complete set of diagnostic results (called withinCDFtest
in Data Collection mode — e.g., when Visualization = FALSE
)
1 2 3 |
funct |
The differentially-private CDF-generating function to be tested |
eps |
Epsilon value for Differential privacy control |
data |
A vector of the data (single variable to compute CDFs from) |
range |
A vector length 2 containing user-specified min and max to truncate the universe to |
gran |
The smallest unit of measurement in the data (one [year] for a list of ages) |
reps |
The number of times the combination of CDFfunction, dataset, and epsilon will be tested |
samplesize |
The specified sample size is randomly selected from each dataset without replacement. |
SmoothAll |
Applies L2 monotonicity post-processing to every DP-CDF |
ExtraTests_CDF |
If a user wishes to add extra diagnostics, the proper
syntax would be:
|
ExtraTests_PDF |
See above |
... |
Optionally add additional parameters. This is primarily used to allow automated execution of varied diagnostic functions. |
A complete set of diagnostic results in the form of
...$allscores
, which holds out a row of output for each of reps
results.
1 2 |
$allscores
$allscores$MaxError_CDF
[1] 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858
[11] 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858 0.8858
$allscores$MaxErrorAt_CDF
[1] 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
$allscores$diffat25
[1] 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322
[11] 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322 0.3322
$allscores$diffatMedian
[1] 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102
[11] 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102 0.5102
$allscores$diffat75
[1] 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505
[11] 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505 0.7505
$allscores$horzdiffat25
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$allscores$horzdiffatMed
[1] 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
[20] 1.8
$allscores$horzdiffat75
[1] 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4
[20] 3.4
$allscores$Medians
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$allscores$MAE_CDF
[1] 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264
[8] 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264
[15] 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264 0.7216264
$allscores$MSE
[1] 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305
[8] 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305
[15] 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305 0.5515305
$allscores$MaxError_PDF
[1] 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322
[11] 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322 0.2322
$allscores$MaxErrorAt_PDF
[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
$allscores$MAE_PDF
[1] 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066
[7] 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066
[13] 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066 0.009734066
[19] 0.009734066 0.009734066
$allscores$MSE_PDF
[1] 0.0006937793 0.0006937793 0.0006937793 0.0006937793 0.0006937793
[6] 0.0006937793 0.0006937793 0.0006937793 0.0006937793 0.0006937793
[11] 0.0006937793 0.0006937793 0.0006937793 0.0006937793 0.0006937793
[16] 0.0006937793 0.0006937793 0.0006937793 0.0006937793 0.0006937793
$allscores$MeanDiff
[1] 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978
[10] 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978 2.37978
[19] 2.37978 2.37978
$allscores$ModeDiff
[1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$allscores$StdDiff
[1] 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915
[10] 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915 1.63915
[19] 1.63915 1.63915
$allscores$VarDiff
[1] 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833
[9] 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833 3.619833
[17] 3.619833 3.619833 3.619833 3.619833
$allscores$SkewDiff
[1] -2.030268 -2.030268 -2.030268 -2.030268 -2.030268 -2.030268 -2.030268
[8] -2.030268 -2.030268 -2.030268 -2.030268 -2.030268 -2.030268 -2.030268
[15] -2.030268 -2.030268 -2.030268 -2.030268 -2.030268 -2.030268
$allscores$KurtDiff
[1] -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975
[7] -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975
[13] -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975 -0.1326975
[19] -0.1326975 -0.1326975
$allscores$MSEanalytic
[1] 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
[16] 0.11 0.11 0.11 0.11 0.11
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.