View source: R/IRT.expectedCounts.R
IRT.expectedCounts | R Documentation |
This S3 method extracts expected counts from model output.
IRT.expectedCounts(object, ...) ## S3 method for class 'din' IRT.expectedCounts(object, ...) ## S3 method for class 'gdina' IRT.expectedCounts(object, ...) ## S3 method for class 'gdm' IRT.expectedCounts(object, ...) ## S3 method for class 'mcdina' IRT.expectedCounts(object, ...) ## S3 method for class 'slca' IRT.expectedCounts(object, ...) ## S3 method for class 'reglca' IRT.expectedCounts(object, ...)
object |
Object of classes |
... |
More arguments to be passed. |
An array with expected counts. The dimensions are items, categories, latent classes and groups.
## Not run: ############################################################################# # EXAMPLE 1: Expected counts gdm function ############################################################################# data(data.fraction1, package="CDM") dat <- data.fraction1$data theta.k <- seq( -6, 6, len=11 ) # discretized ability #--- Model 1: Rasch model mod1 <- CDM::gdm( dat, irtmodel="1PL", theta.k=theta.k, skillspace="normal", centered.latent=TRUE ) emod1 <- CDM::IRT.expectedCounts(mod1) str(emod1) ############################################################################# # EXAMPLE 2: Expected counts gdina function ############################################################################# data(sim.dina, package="CDM") data(sim.qmatrix, package="CDM") #--- Model 1: estimation of the GDINA model mod1 <- CDM::gdina( data=sim.dina, q.matrix=sim.qmatrix) summary(mod1) emod1 <- CDM::IRT.expectedCounts(mod1) str(emod1) #--- Model 2: GDINA model with two groups mod2 <- CDM::gdina( data=CDM::sim.dina, q.matrix=CDM::sim.qmatrix, group=rep(1:2, each=200) ) summary(mod2) emod2 <- CDM::IRT.expectedCounts( mod2 ) str(emod2) ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.