data.jang | R Documentation |
Simulated dataset according to the Jang (2005) L2 reading comprehension study.
data(data.jang)
The format is:
List of 2
$ data : num [1:1500, 1:37] 1 1 1 1 1 1 1 1 1 1 ...
..- attr(*, "dimnames")=List of 2
.. ..$ : NULL
.. ..$ : chr [1:37] "I1" "I2" "I3" "I4" ...
$ q.matrix:'data.frame':
..$ CDV: int [1:37] 1 0 0 1 0 0 0 0 0 0 ...
..$ CIV: int [1:37] 0 0 1 0 0 0 1 0 1 1 ...
..$ SSL: int [1:37] 1 1 1 1 0 0 0 0 0 0 ...
..$ TEI: int [1:37] 0 0 0 0 0 0 0 1 0 0 ...
..$ TIM: int [1:37] 0 0 0 1 1 1 0 0 0 0 ...
..$ INF: int [1:37] 0 1 0 0 0 0 1 0 0 0 ...
..$ NEG: int [1:37] 0 0 0 0 1 0 1 0 0 0 ...
..$ SUM: int [1:37] 0 0 0 0 1 0 0 0 0 0 ...
..$ MCF: int [1:37] 0 0 0 0 0 0 0 0 0 0 ...
Simulated dataset.
Jang, E. E. (2009). Cognitive diagnostic assessment of L2 reading comprehension ability: Validity arguments for Fusion Model application to LanguEdge assessment. Language Testing, 26, 31-73.
## Not run: data(data.jang, package="CDM") data <- data.jang$data q.matrix <- data.jang$q.matrix #*** Model 1: Reduced RUM model mod1 <- CDM::gdina( data, q.matrix, rule="RRUM", conv.crit=.001, increment.factor=1.025 ) summary(mod1) #*** Model 2: Additive model (identity link) mod2 <- CDM::gdina( data, q.matrix, rule="ACDM", conv.crit=.001, linkfct="identity" ) summary(mod2) #*** Model 3: DINA model mod3 <- CDM::gdina( data, q.matrix, rule="DINA", conv.crit=.001 ) summary(mod3) anova(mod1,mod2) ## Model loglike Deviance Npars AIC BIC Chisq df p ## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 88.29627 0 0 ## 2 Model 2 -30270.88 60541.76 153 60847.76 61660.68 NA NA NA anova(mod1,mod3) ## Model loglike Deviance Npars AIC BIC Chisq df p ## 2 Model 2 -30373.99 60747.97 129 61005.97 61691.38 117.9128 24 0 ## 1 Model 1 -30315.03 60630.06 153 60936.06 61748.98 NA NA NA # RRUM summary( CDM::modelfit.cor.din( mod1, jkunits=0) ) ## type value p ## 1 max(X2) 11.79073 0.39645 ## 2 abs(fcor) 0.09541 0.07422 ## est ## MADcor 0.01834 ## SRMSR 0.02300 ## MX2 0.86718 ## 100*MADRESIDCOV 0.38690 ## MADQ3 0.02413 # additive model (identity) summary( CDM::modelfit.cor.din( mod2, jkunits=0) ) ## type value p ## 1 max(X2) 9.78958 1.00000 ## 2 abs(fcor) 0.08770 0.22993 ## est ## MADcor 0.01721 ## SRMSR 0.02158 ## MX2 0.69163 ## 100*MADRESIDCOV 0.36343 ## MADQ3 0.02423 # DINA model summary( CDM::modelfit.cor.din( mod3, jkunits=0) ) ## type value p ## 1 max(X2) 13.48449 0.16020 ## 2 abs(fcor) 0.10651 0.01256 ## est ## MADcor 0.01999 ## SRMSR 0.02495 ## MX2 0.92820 ## 100*MADRESIDCOV 0.42226 ## MADQ3 0.02258 ## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.