Nothing
#' @title Model Mean
#'
#' @description Internal function to extract the model mean from the output of
#' the Cross-Entropy Clustering algorithm.
#'
#' @noRd
model.mean <- function(type, center, param) {
if (length(which(is.na(center))) > 0) {
matrix(NA, 1, ncol(center))
} else if (type == resolve.type("mean")) {
param$mean
} else {
center
}
}
#' @title Model Covariance
#'
#' @description Internal function to extract the model covariance matrix from
#' the output of the Cross-Entropy Clustering algorithm.
#'
#' @noRd
model.covariance <- function(type, cov, mean, param) {
if (length(which(is.na(cov))) > 0) {
matrix(NA, nrow(cov), ncol(cov))
} else if (type == resolve.type("covariance")) {
param$cov
} else if (type == resolve.type("fixedr")) {
diag(ncol(cov)) * param$r
} else if (type == resolve.type("spherical")) {
diag(ncol(cov)) * sum(diag(ncol(cov)) * cov) / ncol(cov)
} else if (type == resolve.type("diagonal")) {
cov * diag(ncol(cov))
} else if (type == resolve.type("eigenvalues")) {
V <- eigen(cov, symmetric = TRUE)$vec
D <- diag(sort(param$eigenvalues, decreasing = TRUE))
V %*% D %*% t(V)
} else if (type == resolve.type("mean")) {
m <- param$mean
mean_diff <- m - mean
cov + (mean_diff %*% t(mean_diff))
} else if (type == resolve.type("all")) {
cov
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.