R/model.covariance.R

Defines functions model.covariance model.mean

#' @title Model Mean
#' 
#' @description Internal function to extract the model mean from the output of 
#'  the Cross-Entropy Clustering algorithm.
#' 
#' @noRd
model.mean <- function(type, center, param) {
    if (length(which(is.na(center))) > 0) {
        matrix(NA, 1, ncol(center))
    } else if (type == resolve.type("mean")) {
        param$mean
    } else {
        center
    }
}


#' @title Model Covariance
#' 
#' @description Internal function to extract the model covariance matrix from 
#'  the output of the Cross-Entropy Clustering algorithm.
#' 
#' @noRd
model.covariance <- function(type, cov, mean, param) {
    if (length(which(is.na(cov))) > 0) {
        matrix(NA, nrow(cov), ncol(cov))
    } else if (type == resolve.type("covariance")) {
        param$cov
    } else if (type == resolve.type("fixedr")) {
        diag(ncol(cov)) * param$r
    } else if (type == resolve.type("spherical")) {
        diag(ncol(cov)) * sum(diag(ncol(cov)) * cov) / ncol(cov)
    } else if (type == resolve.type("diagonal")) {
        cov * diag(ncol(cov)) 
    } else if (type == resolve.type("eigenvalues")) {    
        V <- eigen(cov, symmetric = TRUE)$vec
        D <- diag(sort(param$eigenvalues, decreasing = TRUE))
        V %*% D %*% t(V)
    } else if (type == resolve.type("mean")) {    
        m <- param$mean
        mean_diff <- m - mean
        cov + (mean_diff %*% t(mean_diff))
    } else if (type == resolve.type("all")) {
        cov
    }
}

Try the CEC package in your browser

Any scripts or data that you put into this service are public.

CEC documentation built on Oct. 11, 2024, 1:08 a.m.