modelKrigingInit | R Documentation |
Initialize parameter tuning for the Kriging model, setting the initial guess as well as bound constraints.
modelKrigingInit(
startTheta = NULL,
lowerTheta = NULL,
upperTheta = NULL,
useLambda,
lambdaLower,
lambdaUpper,
combineDistances,
nd,
distanceParameters = F,
distanceParametersLower = NA,
distanceParametersUpper = NA
)
startTheta |
user provided start guess (optional). |
lowerTheta |
lower boundary for theta values (log scale), the kernel parameters. |
upperTheta |
upper boundary for theta values (log scale), the kernel parameters. |
useLambda |
boolean, whether nugget effect (lambda) is used. |
lambdaLower |
lower boundary for lambda (log scale). |
lambdaUpper |
upper boundary for lambda (log scale). |
combineDistances |
boolean, whether multiple distances are combined. |
nd |
number of distance function. |
distanceParameters |
whether the distance function parameters should be optimized |
distanceParametersLower |
lower boundary for parameters of the distance function, default is |
distanceParametersUpper |
upper boundary for parameters of the distance function, default is |
a list with elements x0
(start guess), lower
(lower bound), upper
(upper bound).
modelKriging
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.