View source: R/modelKrigingLikelihood.R
modelKrigingLikelihood | R Documentation |
Used to determine theta/lambda/p values for the Kriging model in modelKriging
with Maximum Likelihood Estimation (MLE).
modelKrigingLikelihood(
xt,
D,
y,
useLambda = FALSE,
corr = fcorrGauss,
indefiniteMethod = "none",
indefiniteType = "PSD",
indefiniteRepair = FALSE,
returnLikelihoodOnly = TRUE,
inverter = "chol",
ntheta = 1
)
xt |
vector, containing parameters like theta, p and lambda. |
D |
matrix (or list of multiple matrices) of distances between training samples. In case of multiple distance matrices, theta (part of xt) has to be a vector, giving a weighting parameter for each matrix. |
y |
vector of observations at sample locations. |
useLambda |
whether to use nugget effect, i.e., lambda (FALSE at default). |
corr |
whether to use nugget effect, i.e., lambda (fcorrGauss at default). |
indefiniteMethod |
The specific method used for correction: spectrum |
indefiniteType |
The general type of correction for indefiniteness: |
indefiniteRepair |
boolean, whether conditions of the distance matrix (in case of |
returnLikelihoodOnly |
boolean, whether the function should return only the likelihood, or a else a list (see return information below). |
inverter |
string, defining the inverter to use. default |
ntheta |
number of kernel parameters. |
the numeric Likelihood value (if returnLikelihoodOnly
is TRUE) or a list with elements:
NegLnLike
concentrated log-likelihood *-1 for minimising
Psi
correlation matrix
Psinv
inverse of correlation matrix (to save computation time in forrRegPredictor)
mu
MLE of model parameter mu
yMu
vector of observations y minus mu
SSQ
MLE of model parameter sigma^2
a
transformation vector for eigenspectrum transformation, see Zaefferer and Bartz-Beielstein (2016)
U
Matrix of eigenvectors for eigenspectrum transformation, see Zaefferer and Bartz-Beielstein (2016)
isIndefinite
whether the uncorrected correlation (kernel) matrix is indefinite
Forrester, Alexander I.J.; Sobester, Andras; Keane, Andy J. (2008). Engineering Design via Surrogate Modelling - A Practical Guide. John Wiley & Sons.
Zaefferer, Martin; Stork, Joerg; Friese, Martina; Fischbach, Andreas; Naujoks, Boris; Bartz-Beielstein, Thomas. (2014). Efficient global optimization for combinatorial problems. In Proceedings of the 2014 conference on Genetic and evolutionary computation (GECCO '14). ACM, New York, NY, USA, 871-878. DOI=10.1145/2576768.2598282
Zaefferer, Martin; Stork, Joerg; Bartz-Beielstein, Thomas. (2014). Distance Measures for Permutations in Combinatorial Efficient Global Optimization. In Parallel Problem Solving from Nature - PPSN XIII (p. 373-383). Springer International Publishing.
Martin Zaefferer and Thomas Bartz-Beielstein. (2016). Efficient Global Optimization with Indefinite Kernels. Parallel Problem Solving from Nature-PPSN XIV. Accepted, in press. Springer.
modelKriging
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.