iep: Compute Instantaneous Equilibrium Path (alias Market Clearing...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/iep.R

Description

This function computes the instantaneous equilibrium path (alias market clearing path).

Usage

1
2
iep(A.iep = NULL, A = NULL,  B.iep = NULL, B = NULL,
    SExg.iep, InitialEndowments, nPeriods.iep, ...)

Arguments

A.iep

A.iep(state.iep) is a function which returns a demand coefficient matrix or a function A(state). state.iep is a list consisting of time (the iep time), p (the price vector at the iep time), z (output and utility vector at the iep time).

A

a demand coefficient matrix or a function A(state) which returns a demand coefficient matrix. If A.iep is not NULL, A will be ignored.

B.iep

B.iep(state.iep) is a function which returns a supply coefficient matrix or a function B(state) at the iep time.

B

a supply coefficient matrix or a function B(state) which returns a supply coefficient matrix. If B.iep is not NULL, B will be ignored.

SExg.iep

an exogenous supply matrix or a function SExg.iep(state.iep) which returns an exogenous supply matrix at the iep time.

InitialEndowments

a matrix indicating the initial endowments.

nPeriods.iep

number of periods of the instantaneous equilibrium path.

...

parameters of the function sdm.

Details

This function computes the instantaneous equilibrium path (alias market clearing path) of a dynamic economy with the structural dynamic model (the sdm function).

Value

a list of general equilibria.

Author(s)

LI Wu <liwu@staff.shu.edu.cn>

References

Acemoglu, D. (2009, ISBN: 9780691132921) Introduction to Modern Economic Growth. Princeton University Press.

LI Wu (2019, ISBN: 9787521804225) General Equilibrium and Structural Dynamics: Perspectives of New Structural Economics. Beijing: Economic Science Press. (In Chinese)

LI Wu (2010) A Structural Growth Model and its Applications to Sraffa's System. http://www.iioa.org/conferences/18th/papers/files/104_20100729011_AStructuralGrowthModelanditsApplicationstoSraffasSstem.pdf

Torres, Jose L. (2016, ISBN: 9781622730452). Introduction to Dynamic Macroeconomic General Equilibrium Models (Second Edition). Vernon Press.

See Also

sdm; Example7.2

Examples

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
## example 6.4 of Acemoglu (2009, page 206)
discount.factor <- 0.97
return.rate <- 1 / discount.factor - 1

A <- function(state) {
  a1 <- CD_A(
    1, rbind(0.35, 0.65, 0),
    c(state$p[1] * (1 + return.rate), state$p[2:3])
  )
  a2 <- c(1, 0, 0)
  a1[3] <- state$p[1] * a1[1] * return.rate / state$p[3]
  cbind(a1, a2)
}

B <- matrix(c(
  1, 0,
  0, 1,
  0, 1
), 3, 2, TRUE)


SExg.iep <- {
  tmp <- matrix(NA, 3, 2)
  tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 3, 2)
  tmp[1, 1] <- 0.01
  tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

ge.list <- iep(
  A = A, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 50
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "l")

z[1:49, 1] * (1 - 0.97 * 0.35) # the same as z[-1,2] (i.e. consumption)

# stochastic (instantaneous) equilibrium path (SEP) in the economy above.
nPeriods.iep <-  150
set.seed(1)
alpha.SEP <- rep(1, 50)
for (t in 51:nPeriods.iep) {
  alpha.SEP[t] <- exp(0.95 * log(alpha.SEP[t - 1]) +
    rnorm(1, sd = 0.01))
}

A.iep <- function(state.iep) {
  A <- function(state) {
    a1 <- CD_A(
      alpha.SEP[state.iep$time],
      rbind(0.35, 0.65, 0),
      c(state$p[1] * (1 + return.rate), state$p[2:3])
    )
    a2 <- c(1, 0, 0)
    a1[3] <- state$p[1] * a1[1] * return.rate / state$p[3]
    cbind(a1, a2)
  }

  return(A)
}

ge.list <- iep(
  A.iep = A.iep, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = nPeriods.iep
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "l")

## an example with two firms
sigma <- 0 # 0 implies Cobb-Douglas production functions
gamma1 <- 0.01
gamma2 <- 0.01
gamma3 <- 0.01
beta1 <- 0.35
beta2 <- 0.4

A.iep <- function(state.iep) {
  A <- function(state) {
    a1 <- CES_A(sigma, exp(gamma1 * (state.iep$time - 1)), rbind(beta1, 0, 1 - beta1), state$p)
    a2 <- CES_A(sigma, exp(gamma2 * (state.iep$time - 1)), rbind(beta2, 0, 1 - beta2), state$p)
    a3 <- c(0, 1, 0)
    cbind(a1, a2, a3)
  }

  return(A)
}

B <- diag(3)

SExg.iep <- function(state.iep) {
  tmp <- matrix(NA, 3, 3)
  tmp[3, 3] <- exp(gamma3 * (state.iep$time - 1))
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 3, 3)
  tmp[1, 1] <- 0.01
  tmp[2, 2] <- 0.02
  tmp[3, 3] <- 1
  tmp
}

ge.list <- iep(
  A.iep = A.iep, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 100, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z)) # outputs and utility
matplot(z, type = "l")

diff(log(z)) # logarithmic growth rate

## an example with heterogeneous firms
A <- function(state) {
  a1 <- CD_A(1, rbind(0.35, 0.65), state$p)
  a2 <- CD_A(1.3, rbind(0.9, 0.1), state$p)
  a3 <- c(1, 0)
  cbind(a1, a2, a3)
}

B <- matrix(c(
  1, 1, 0,
  0, 0, 1
), 2, 3, TRUE)

SExg.iep <- {
  tmp <- matrix(NA, 2, 3)
  tmp[2, 3] <- 1
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 2, 3)
  tmp[1, 1] <- tmp[1, 2] <- 0.01
  tmp[2, 3] <- 1
  tmp
}

ge.list <- iep(
  A = A, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 200, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "l")

## an iep of the example (see Table 2.1 and 2.2) of the canonical dynamic
## macroeconomic general equilibrium model in Torres (2016).
discount.factor <- 0.97
return.rate <- 1 / discount.factor - 1
depreciation.rate <- 0.06

A <- function(state) {
  a1 <- CD_A(1, rbind(0, 0.65, 0.35, 0), state$p)
  a2 <- CD_A(1, rbind(0.4, 1 - 0.4, 0, 0), state$p)
  a3 <- c(1, 0, 0, state$p[1] * return.rate / state$p[4])
  cbind(a1, a2, a3)
}

B <- matrix(c(
  1, 0, 1 - depreciation.rate,
  0, 1, 0,
  0, 0, 1,
  0, 1, 0
), 4, 3, TRUE)

SExg.iep <- {
  tmp <- matrix(NA, 4, 3)
  tmp[2, 2] <- tmp[4, 2] <- 1
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 4, 3)
  tmp[1, 1] <- 0.01
  tmp[2, 2] <- tmp[4, 2] <- 1
  tmp[3, 3] <- 0.01
  tmp
}

ge.list <- iep(
  A = A, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 200, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "l")

## another iep of the economy above
discount.factor <- 0.97
return.rate <- 1 / discount.factor - 1
depreciation.rate <- 0.06

A <- function(state) {
  a1 <- CD_A(
    1, rbind(0.35, 0.65, 0),
    c(state$p[1] * (return.rate + depreciation.rate), state$p[2:3])
  )
  a2 <- CD_A(1, rbind(0.4, 1 - 0.4, 0), state$p)
  a1[3] <- state$p[1] * a1[1] * return.rate / state$p[3]
  cbind(a1, a2)
}

B <- function(state) {
  tmp <- matrix(c(
    1, 0,
    0, 1,
    0, 1
  ), 3, 2, TRUE)

  tmp[1] <- tmp[1] + A(state)[1, 1] * (1 - depreciation.rate)
  tmp
}

SExg.iep <- {
  tmp <- matrix(NA, 3, 2)
  tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 3, 2)
  tmp[1, 1] <- 0.01
  tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

ge.list <- iep(
  A = A, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 100, n = 3, m = 2, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "l")

## TFP shock in the economy above (see Torres, 2016, section 2.8).
nPeriods.iep <- 200

discount.factor <- 0.97
return.rate <- 1 / discount.factor - 1
depreciation.rate <- 0.06

set.seed(1)
alpha.shock <- rep(1, 100)
alpha.shock[101] <- exp(0.01)
for (t in 102:nPeriods.iep) {
  alpha.shock[t] <- exp(0.95 * log(alpha.shock[t - 1]))
}

A.iep <- function(state.iep) {
  A <- function(state) {
    a1 <- CD_A(
      alpha.shock[state.iep$time],
      rbind(0.35, 0.65, 0),
      c(state$p[1] * (return.rate + depreciation.rate), state$p[2:3])
    )
    a2 <- CD_A(1, rbind(0.4, 1 - 0.4, 0), state$p)
    a1[3] <- state$p[1] * a1[1] * return.rate / state$p[3]
    cbind(a1, a2)
  }

  return(A)
}

B.iep <- function(state.iep) {
  B <- function(state) {
    tmp <- matrix(c(
      1, 0,
      0, 1,
      0, 1
    ), 3, 2, TRUE)

    a1 <- CD_A(
      alpha.shock[state.iep$time],
      rbind(0.35, 0.65, 0),
      c(state$p[1] * (return.rate + depreciation.rate), state$p[2:3])
    )

    tmp[1] <- tmp[1] + a1[1] * (1 - depreciation.rate)
    tmp
  }

  return(B)
}

SExg.iep <- {
  tmp <- matrix(NA, 3, 2)
  tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 3, 2)
  tmp[1, 1] <- tmp[2, 2] <- tmp[3, 2] <- 1
  tmp
}

ge.list <- iep(
  A.iep = A.iep, B.iep = B.iep, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = nPeriods.iep, n = 3, m = 2, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z))
c <- sapply(ge.list, function(x) x$A[1,2]*x$z[2]) #consumption

par(mfrow = c(2, 2))
matplot(z, type = "l")
x <- 100:140
plot(x, z[x, 1] / z[x[1], 1], type = "b", pch = 20)
plot(x, z[x, 2] / z[x[1], 2], type = "b", pch = 20)
plot(x, c[x] / c[x[1]], type = "b", pch = 20)

## an iep of example 7.2 (a monetary economy) in Li (2019).
A <- function(state) {
  alpha <- rbind(1, 1, 1)
  Beta <- matrix(c(
    0.5, 0.5, 0.5,
    0.5, 0.5, 0.5,
    -1, -1, -1
  ), 3, 3, TRUE)
  CD_mA(alpha, Beta, state$p)
}

B <- diag(3)

SExg.iep <- {
  tmp <- matrix(NA, 3, 3)
  tmp[2, 2] <- 100
  tmp[3, 3] <- 100
  tmp
}

InitialEndowments <- {
  tmp <- matrix(0, 3, 3)
  tmp[1, 1] <- 10
  tmp[2, 2] <- tmp[3, 3] <- 100
  tmp
}

ge.list <- iep(
  A = A, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 20,
  moneyIndex = 3,
  moneyOwnerIndex = 3,
  pExg = rbind(NA, NA, 0.25)
)

par(mfrow = c(1, 2))
z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "b", pch = 20)
p <- t(sapply(ge.list, function(x) x$p))
matplot(p, type = "b", pch = 20)

## an example of structural transition policy
A.iep <- function(state.iep) {
  a <- 15
  b <- 25
  A <- function(state) {
    alpha1 <- 5
    alpha2 <- 15

    if (state.iep$time == 1 || state.iep$z[1] <= a) {
      alpha <- alpha1
    } else if (state.iep$z[1] > b) {
      alpha <- alpha2
    } else {
      alpha <- (b - state.iep$z[1]) / (b - a) * alpha1 +
        (state.iep$z[1] - a) / (b - a) * alpha2
    }

    return(cbind(
      CD_A(alpha, c(0.5, 0.5), state$p),
      c(1, 0)
    ))
  }

  return(A)
}

B <- matrix(c(
  1, 0,
  0, 1
), 2, 2, TRUE)

SExg.iep <- function(state.iep) {
  if (state.iep$time >= 15 && state.iep$z[1] < 30) {
    result <- matrix(c(
      NA, NA,
      0.6, 0.4
    ), 2, 2, TRUE)
  } else {
    result <- matrix(c(
      NA, NA,
      0, 1
    ), 2, 2, TRUE)
  }

  return(result)
}

InitialEndowments <- {
  tmp <- matrix(0, 2, 2)
  tmp[1, 1] <- 1
  tmp[2, 2] <- 1
  tmp
}

ge.list <- iep(
  A.iep = A.iep, B = B, SExg.iep = SExg.iep,
  InitialEndowments = InitialEndowments,
  nPeriods.iep = 30, trace = FALSE
)

z <- t(sapply(ge.list, function(x) x$z))
matplot(z, type = "b", pch = 20)

CGE documentation built on July 8, 2020, 5:16 p.m.

Related to iep in CGE...