CGNM: Cluster Gauss-Newton Method

knitr::opts_chunk$set(
  collapse = TRUE,
  comment = "#>"
)
library(CGNM)
library(knitr)

When and when not to use CGNM

Use CGNM

Not to use CGNM

How to use CGNM

To illustrate the use of CGNM here we illustrate how CGNM can be used to estimate two sets of the best fit parameters of the pharmacokinetics model when the drug is administered orally (known as flip-flop kinetics).

Prepare the model ($\boldsymbol f$)

model_function=function(x){

  observation_time=c(0.1,0.2,0.4,0.6,1,2,3,6,12)
  Dose=1000
  F=1

  ka=x[1]
  V1=x[2]
  CL_2=x[3]
  t=observation_time

  Cp=ka*F*Dose/(V1*(ka-CL_2/V1))*(exp(-CL_2/V1*t)-exp(-ka*t))

  log10(Cp)
}

Prepare the data ($\boldsymbol y^*$)

observation=log10(c(4.91, 8.65, 12.4, 18.7, 24.3, 24.5, 18.4, 4.66, 0.238))

Run Cluster_Gauss_Newton_method

Here we have specified the upper and lower range of the initial guess.

CGNM_result=Cluster_Gauss_Newton_method(nonlinearFunction=model_function,
targetVector = observation,
initial_lowerRange =rep(0.01,3),initial_upperRange =  rep(100,3),lowerBound = rep(0,3), saveLog=TRUE, num_minimizersToFind = 500, ParameterNames = c("Ka","V1","CL"))

Obtain the approximate minimizers

kable(head(acceptedApproximateMinimizers(CGNM_result)))
kable(table_parameterSummary(CGNM_result))

Can run residual resampling bootstrap analyses using CGNM as well

CGNM_bootstrap=Cluster_Gauss_Newton_Bootstrap_method(CGNM_result, nonlinearFunction=model_function)
kable(table_parameterSummary(CGNM_bootstrap))

Visualize the CGNM modelfit analysis result

To use the plot functions the user needs to manually load ggplot2.

library(ggplot2)

Inspect the distribution of SSR of approximate minimizers found by CGNM

Despite the robustness of the algorithm not all approximate minimizers converge so here we visually inspect to see how many of the approximate minimizers we consider to have the similar SSR to the minimum SSR. Currently the algorithm automatically choose "acceptable" approximate minimizer based on Grubbs' Test for Outliers. If for whatever the reason this criterion is not satisfactly the users can manually set the indicies of the acceptable approximat minimizers.

plot_Rank_SSR(CGNM_result)
plot_paraDistribution_byHistogram(CGNM_bootstrap, bins = 50)+scale_x_continuous(trans="log10")

visually inspect goodness of fit of top 50 approximate minimizers

plot_goodnessOfFit(CGNM_result, plotType = 1, independentVariableVector = c(0.1,0.2,0.4,0.6,1,2,3,6,12), plotRank = seq(1,50))

plot model prediction with uncertainties based on residual resampling bootstrap analysis

plot_goodnessOfFit(CGNM_bootstrap, plotType = 1, independentVariableVector = c(0.1,0.2,0.4,0.6,1,2,3,6,12))

plot profile likelihood

plot_profileLikelihood(c("CGNM_log","CGNM_log_bootstrap"))+scale_x_continuous(trans="log10")
kable(table_profileLikelihoodConfidenceInterval(c("CGNM_log","CGNM_log_bootstrap"), alpha = 0.25))

plot profile likelihood surface

plot_2DprofileLikelihood(CGNM_result, showInitialRange=FALSE, alpha = 0.05)+scale_x_continuous(trans="log10")+scale_y_continuous(trans="log10")

Parallel computation

Cluster Gauss Newton method implementation in CGNM package (above version 0.6) can use nonlinear function that takes multiple input vectors stored in matrix (each column as the input vector) and output matrix (each column as the output vector). This implementation was to be used to parallelize the computation. See below for the examples of parallelized implementation in various hardware. Cluster Gauss Newton method is embarrassingly parallelizable so the computation speed is almost proportional to the number of computation cores used especially for the nonlinear functions that takes time to compute (e.g. models with numerical method to solve a large system of ODEs).

model_matrix_function=function(X){
  Y_list=lapply(split(X, rep(seq(1:nrow(X)),ncol(X))), model_function)
  Y=t(matrix(unlist(Y_list),ncol=length(Y_list)))
}

testX=t(matrix(c(rep(0.01,3),rep(10,3),rep(100,3)), nrow = 3))
print("testX")
print(testX)
print("model_matrix_function(testX)")
print(model_matrix_function(testX))

print("model_matrix_function(testX)-rbind(model_function(testX[1,]),model_function(testX[2,]),model_function(testX[3,]))")
print(model_matrix_function(testX)-rbind(model_function(testX[1,]),model_function(testX[2,]),model_function(testX[3,])))

an example of parallel implementation for Mac using parallel package

# library(parallel)
#
# obsLength=length(observation)
# 
## Given CGNM searches through wide range of parameter combination, it can encounter
## parameter combinations that is not feasible to evaluate. This try catch function
## is implemented within CGNM for regular functions but for the matrix functions
## user needs to implement outside of CGNM
#
# modelFunction_tryCatch=function(x_in){
#  out=tryCatch({model_function(x_in)},
#               error=function(cond) {rep(NA, obsLength)}
#  )
#  return(out)
# }
# 
#  model_matrix_function=function(X){
#   Y_list=mclapply(split(X, rep(seq(1:nrow(X)),ncol(X))), modelFunction_tryCatch,mc.cores = (parallel::detectCores()-1), mc.preschedule = FALSE)
#
#   Y=t(matrix(unlist(Y_list),ncol=length(Y_list)))
# 
#   return(Y)
#  }

an example of parallel implementation for Windows using foreach and doParllel packages

#library(foreach)
#library(doParallel)

#numCore=8
#registerDoParallel(numCore-1)
#cluster=makeCluster(numCore-1, type = "PSOCK")
#registerDoParallel(cl=cluster)

# obsLength=length(observation)

## Given CGNM searches through wide range of parameter combination, it can encounter
## parameter combinations that is not feasible to evaluate. This try catch function
## is implemented within CGNM for regular functions but for the matrix functions
## user needs to implement outside of CGNM

# modelFunction_tryCatch=function(x_in){
#  out=tryCatch({model_function(x_in)},
#               error=function(cond) {rep(NA, obsLength)}
#  )
#  return(out)
# }

#model_matrix_function=function(X){
#  Y_list=foreach(i=1:dim(X)[1], .export = c("model_function", "modelFunction_tryCatch"))%dopar%{ #make sure to include all related functions in .export and all used packages in .packages for more information read documentation of dopar
#      modelFunction_tryCatch((X[i,]))
#    }

#  Y=t(matrix(unlist(Y_list),ncol=length(Y_list)))
#}
CGNM_result=Cluster_Gauss_Newton_method(nonlinearFunction=model_matrix_function,
targetVector = observation,
initial_lowerRange =rep(0.01,3),initial_upperRange =  rep(100,3),lowerBound = rep(0,3), saveLog=TRUE, num_minimizersToFind = 500, ParameterNames = c("Ka","V1","CL"))


#stopCluster(cluster) #make sure to close the created cluster if needed
unlink("CGNM_log", recursive=TRUE)
unlink("CGNM_log_bootstrap", recursive=TRUE)

What is CGNM?

For the complete description and comparison with the conventional algorithm please see (https: //doi.org/10.1007/s11081-020-09571-2):

Aoki, Y., Hayami, K., Toshimoto, K., & Sugiyama, Y. (2020). Cluster Gauss–Newton method. Optimization and Engineering, 1-31.

The mathematical problem CGNM solves

Cluster Gauss-Newton method is an algorithm for obtaining multiple minimisers of nonlinear least squares problems $$ \min_{\boldsymbol{x}}|| \boldsymbol{f}(\boldsymbol x)-\boldsymbol{y}^||2^{\,2} $$ which do not have a unique solution (global minimiser), that is to say, there exist $\boldsymbol x^{(1)}\neq\boldsymbol x^{(2)}$ such that $$ \min{\boldsymbol{x}}|| \boldsymbol{f}(\boldsymbol x)-\boldsymbol{y}^||_2^{\,2}=|| \boldsymbol{f}(\boldsymbol x^{(1)})-\boldsymbol{y}^||_2^{\,2}=|| \boldsymbol{f}(\boldsymbol x^{(2)})-\boldsymbol{y}^||_2^{\,2} \,. $$ Parameter estimation problems of mathematical models can often be formulated as nonlinear least squares problems. Typically these problems are solved numerically using iterative methods. The local minimiser obtained using these iterative methods usually depends on the choice of the initial iterate. Thus, the estimated parameter and subsequent analyses using it depend on the choice of the initial iterate. One way to reduce the analysis bias due to the choice of the initial iterate is to repeat the algorithm from multiple initial iterates (i.e. use a multi-start method). However, the procedure can be computationally intensive and is not always used in practice. To overcome this problem, we propose the Cluster Gauss-Newton method (CGNM), an efficient algorithm for finding multiple approximate minimisers of nonlinear-least squares problems. CGN simultaneously solves the nonlinear least squares problem from multiple initial iterates. Then, CGNM iteratively improves the approximations from these initial iterates similarly to the Gauss-Newton method. However, it uses a global linear approximation instead of the Jacobian. The global linear approximations are computed collectively among all the iterates to minimise the computational cost associated with the evaluation of the mathematical model.



Try the CGNM package in your browser

Any scripts or data that you put into this service are public.

CGNM documentation built on May 31, 2023, 5:57 p.m.