Nothing
test_that("`.isCNV returns expected errors", {
# trigger missing(CNV) by not passing an input
expect_error(.isCNV(),
"`CNV` must be provided")
# trigger is.data.frame by passing objects that resemble data.frames; such as
# a list with 5 elements and a matrix with 5 columns
expect_error(.isCNV(vector(mode = "list", length = 5L)),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
expect_error(.isCNV(matrix(1, 10, 5L)),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
# trigger the column header test -- test for "close"headers and missing headers
expect_error(.isCNV(data.frame("Id"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"ChR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L))),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV` data.frame in PLINK format with columns: `ID`, `CHR`, `BP1`, `BP2`,`TYPE`")
# trigger integer vector test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22.0, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$CHR` must take a single value in [1, 22]",
fixed = TRUE)
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep("22L", 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$CHR` must take a single value in [1, 22]",
fixed = TRUE)
# trigger only 1 value
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= c(rep(22L, 9L), 21L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$CHR` must take a single value in [1, 22]",
fixed = TRUE)
# trigger out of expected range [0, 22]
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(23L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$CHR` must take a single value in [1, 22]",
fixed = TRUE)
# trigger integer vector test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= as.numeric(seq(1L, 20L, 2L)) -3.1,
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP1 must contain non-negative numbers",
fixed = TRUE)
# trigger all > 0 test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L) - 2L,
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP1 must contain non-negative numbers",
fixed = TRUE)
# "`CNV$BP2 must contain non-negative numbers"=
# is.vector(CNV$BP2, mode = "integer") &&
# all(CNV$BP2 >= 0L),
# trigger integer vector test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= as.numeric(seq(2L, 20L, 2L)) -2.1,
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP2 must contain non-negative numbers",
fixed = TRUE)
# trigger all > 0 test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L) - 3L,
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP2 must contain non-negative numbers",
fixed = TRUE)
# "`CNV$BP2 must be great than CNV$BP1 for all records"=
# !any(CNV$BP1 > CNV$BP2),
# trigger for all greater
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(2L, 20L, 2L),
"BP2"= seq(1L, 20L, 2L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP2 must be great than CNV$BP1 for all records",
fixed = TRUE)
# trigger for 1 greater
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= c( 2L, 2L, 6L, 8L, 10L,
12L, 14L, 16L, 18L, 20L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$BP2 must be great than CNV$BP1 for all records",
fixed = TRUE)
# "`CNV$Type` must be integer in [0,1, 3, ..., 9999]"=
# is.vector(CNV$TYPE, mode = "integer") &&
# all(CNV$TYPE %in% c(0L, 1L, 2L, 3L, 4L))
# trigger integer vector test
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= as.numeric(c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L)))),
"`CNV$Type` must be integer in [0, 1, 3, ..., 9999]",
fixed = TRUE)
#out of range
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(-1L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$Type` must be integer in [0, 1, 3, ..., 9999]",
fixed = TRUE)
expect_error(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(1L, 20L, 2L),
"BP2"= seq(2L, 20L, 2L),
"TYPE"= c(2L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))),
"`CNV$Type` must be integer in [0, 1, 3, ..., 9999]",
fixed = TRUE)
expect_equal(.isCNV(data.frame("ID"= 1L:10L,
"CHR"= rep(22L, 10L),
"BP1"= seq(100L, 2000L, 200L),
"BP2"= seq(200L, 2000L, 200L),
"TYPE"= c(0L, 0L, 1L, 1L,
0L, 3L, 3L, 3L,
4L, 4L))), TRUE)
})
test_that("`.testIterControl` returns expected errors", {
expect_error(.testIterControl(),
"`iter.control` must be provided")
expect_error(.testIterControl(c("max.iter" = 3)),
"`iter.control` must be a list")
expect_warning(.testIterControl(list("maxiter" = 5)),
"ignored iter.control elements maxiter")
expect_warning(.testIterControl(list("maxiter" = 5, "tolbeta" = 0.01)),
"ignored iter.control elements maxiter, tolbeta")
expect_error(.testIterControl(list("max.iter" = c(1, 2))),
"iter.control$max.iter is not appropriately defined",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 1)),
"iter.control$max.iter is not appropriately defined",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = 0)),
"iter.control$tol.beta is not appropriately defined (0 < tol.beta <= 1e-2)",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = 0.1)),
"iter.control$tol.beta is not appropriately defined (0 < tol.beta <= 1e-2)",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = c(0.0001, 0.0001))),
"iter.control$tol.beta is not appropriately defined (0 < tol.beta <= 1e-2)",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = 0.01,
"tol.loss" = 0)),
"iter.control$tol.loss is not appropriately defined (0 < tol.loss <= 1e-3)",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = 0.01,
"tol.loss" = 0.1)),
"iter.control$tol.loss is not appropriately defined (0 < tol.loss <= 1e-3)",
fixed = TRUE)
expect_error(.testIterControl(list("max.iter" = 100,
"tol.beta" = 0.01,
"tol.loss" = c(0.001, 0.001))),
"iter.control$tol.loss is not appropriately defined (0 < tol.loss <= 1e-3)",
fixed = TRUE)
})
test_that("`.testIterControl` returns expected results", {
default_iter <- list(max.iter = 8L, tol.beta = 1e-3, tol.loss = 1e-6)
expect_equal(.testIterControl(NULL), default_iter)
expect_equal(.testIterControl(list("max.iter" = 100)),
list(max.iter = 100L, tol.beta = 1e-3, tol.loss = 1e-6))
expect_equal(.testIterControl(list("tol.beta" = 0.002)),
list(max.iter = 8L, tol.beta = 0.002, tol.loss = 1e-6))
expect_equal(.testIterControl(list("tol.loss" = 0.0004)),
list(max.iter = 8L, tol.beta = 1e-3, tol.loss = 0.0004))
expect_equal(.testIterControl(list("tol.loss" = 0.0004, "tol.beta" = 0.002)),
list(max.iter = 8L, tol.beta = 0.002, tol.loss = 0.0004))
expect_equal(.testIterControl(list("tol.loss" = 0.0004, "tol.beta" = 0.002, "max.iter" = 5)),
list(max.iter = 5L, tol.beta = 0.002, tol.loss = 0.0004))
expect_warning(out <- .testIterControl(list("tolloss" = 0.0004, "tolbeta" = 0.002, "maxiter" = 5)))
expect_equal(out, default_iter)
})
test_that("`.testCVControl returns expected errors", {
expect_error(.testCVControl(),
"`cv.control` must be provided")
expect_error(.testCVControl(c("n.fold" = 3)),
"`cv.control` must be a list")
expect_warning(.testCVControl(list("nfold" = 5), family = "gaussian"),
"ignored cv.control elements nfold")
expect_warning(.testCVControl(list("nfold" = 5, "ncore" = 1), family = "gaussian"),
"ignored cv.control elements nfold, ncore")
expect_error(.testCVControl(list("n.fold" = c(1, 2))),
"cv.control$n.fold is not appropriately defined",
fixed = TRUE)
expect_error(.testCVControl(list("n.fold" = 1)),
"cv.control$n.fold is not appropriately defined",
fixed = TRUE)
expect_error(.testCVControl(list("n.fold" = 4,
"n.core" = 1:2)),
"cv.control$n.core is not appropriately defined",
fixed = TRUE)
expect_error(.testCVControl(list("n.fold" = 4,
"n.core" = "1")),
"cv.control$n.core is not appropriately defined",
fixed = TRUE)
expect_error(.testCVControl(list("n.fold" = 4,
"n.core" = 2,
"stratified" = 0)),
"cv.control$stratified is not appropriately defined",
fixed = TRUE)
expect_error(.testCVControl(list("n.fold" = 4,
"n.core" = 2,
"stratified" = c(FALSE, TRUE))),
"cv.control$stratified is not appropriately defined",
fixed = TRUE)
})
test_that("`.testCVControl` returns expected results", {
default_cv <- list("n.fold" = 5L, "n.core" = 1L, "stratified" = FALSE)
expect_equal(.testCVControl(NULL, family = "gaussian"), default_cv)
expect_equal(.testCVControl(list("n.fold" = 100), family = "gaussian"),
list("n.fold" = 100L, "n.core" = 1L, "stratified" = FALSE))
expect_equal(.testCVControl(list("n.core" = 16), family = "gaussian"),
list("n.fold" = 5L, "n.core" = 16L, "stratified" = FALSE))
expect_equal(.testCVControl(list("stratified" = TRUE), family = "gaussian"),
list("n.fold" = 5L, "n.core" = 1L, "stratified" = FALSE))
expect_equal(.testCVControl(list("stratified" = TRUE), family = "binomial"),
list("n.fold" = 5L, "n.core" = 1L, "stratified" = TRUE))
expect_equal(.testCVControl(list("stratified" = TRUE, "n.core" = 8), family = "binomial"),
list("n.fold" = 5L, "n.core" = 8L, "stratified" = TRUE))
expect_equal(.testCVControl(list("stratified" = TRUE, "n.core" = 8, "n.fold" = 15), family = "binomial"),
list("n.fold" = 15L, "n.core" = 8L, "stratified" = TRUE))
expect_warning(out <- .testCVControl(list("stratifieD" = TRUE, "ncore" = 8, "nfold" = 15), family = "gaussian"))
expect_equal(out, default_cv)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.