Nothing
#' Select a Binary Outcome Misclassification Model for a Given Prior
#'
#' @param prior A character string specifying the prior distribution for the
#' \eqn{\beta} and \eqn{\gamma} parameters. Options are \code{"t"},
#' \code{"uniform"}, \code{"normal"}, or \code{"dexp"} (double Exponential, or Weibull).
#'
#' @return \code{model_picker} returns a character string specifying the binary
#' outcome misclassification model to be turned into a .BUG file and used
#' for MCMC estimation with \code{rjags}.
#'
model_picker <- function(prior){
unif_modelstring = "
model{
# likelihood
for(i in 1:sample_size){
obs_Y[i] ~ dcat(pi_obs[i, 1:n_cat])
# regression
for(j in 1:n_cat){
log(phi[i, j]) <- beta[j,1:dim_x] %*% x[i,1:dim_x]
pi[i, j] <- phi[i, j] / sum(phi[i, 1:n_cat])
}
for(k in 1:n_cat){
for(j in 1:n_cat){
log(phistar[i, k, j]) <- gamma[k, j, 1:dim_z] %*% z[i,1:dim_z]
pistar[i, k, j] <- phistar[i, k, j] / (sum(phistar[i, 1:n_cat, j]))
}
pi_obs[i, k] <- sum(pistar[i, k, 1:n_cat] * pi[i, 1:n_cat])
}
}
# reference categories
#beta[n_cat, 1:dim_x] <- 0
#gamma[n_cat, 1:n_cat, 1:dim_z] <- 0
# priors
for(l in 1:dim_x){
beta[1, l] ~ dunif(unif_l_beta[1, l], unif_u_beta[1, l])
beta[2, l] <- 0
}
for(m in 1:n_cat){
for(n in 1:dim_z){
gamma[1, m, n] ~ dunif(unif_l_gamma[1, m, n], unif_u_gamma[1, m, n])
gamma[2, m, n] <- 0
}
}
}
"
t_modelstring = "
model{
# likelihood
for(i in 1:sample_size){
obs_Y[i] ~ dcat(pi_obs[i, 1:n_cat])
# regression
for(j in 1:n_cat){
log(phi[i, j]) <- beta[j,1:dim_x] %*% x[i,1:dim_x]
pi[i, j] <- phi[i, j] / sum(phi[i, 1:n_cat])
}
for(k in 1:n_cat){
for(j in 1:n_cat){
log(phistar[i, k, j]) <- gamma[k, j, 1:dim_z] %*% z[i,1:dim_z]
pistar[i, k, j] <- phistar[i, k, j] / (sum(phistar[i, 1:n_cat, j]))
}
pi_obs[i, k] <- sum(pistar[i, k, 1:n_cat] * pi[i, 1:n_cat])
}
}
# reference categories
#beta[n_cat, 1:dim_x] <- 0
#gamma[n_cat, 1:n_cat, 1:dim_z] <- 0
# priors
for(l in 1:dim_x){
beta[1, l] ~ dt(t_mu_beta[1,l], t_tau_beta[1,l], t_df_beta[1,l])
beta[2, l] <- 0
}
for(m in 1:n_cat){
for(n in 1:dim_z){
gamma[1, m, n] ~ dt(t_mu_gamma[1,m,n], t_tau_gamma[1,m,n], t_df_gamma[1,m,n])
gamma[2, m, n] <- 0
}
}
}
"
normal_modelstring = "
model{
# likelihood
for(i in 1:sample_size){
obs_Y[i] ~ dcat(pi_obs[i, 1:n_cat])
# regression
for(j in 1:n_cat){
log(phi[i, j]) <- beta[j,1:dim_x] %*% x[i,1:dim_x]
pi[i, j] <- phi[i, j] / sum(phi[i, 1:n_cat])
}
for(k in 1:n_cat){
for(j in 1:n_cat){
log(phistar[i, k, j]) <- gamma[k, j, 1:dim_z] %*% z[i,1:dim_z]
pistar[i, k, j] <- phistar[i, k, j] / (sum(phistar[i, 1:n_cat, j]))
}
pi_obs[i, k] <- sum(pistar[i, k, 1:n_cat] * pi[i, 1:n_cat])
}
}
# reference categories
#beta[n_cat, 1:dim_x] <- 0
#gamma[n_cat, 1:n_cat, 1:dim_z] <- 0
# priors
for(l in 1:dim_x){
beta[1, l] ~ dnorm(normal_mu_beta[1, l], normal_sigma_beta[1, l])
beta[2, l] <- 0
}
for(m in 1:n_cat){
for(n in 1:dim_z){
gamma[1, m, n] ~ dnorm(normal_mu_gamma[1, m, n], normal_sigma_gamma[1, m, n])
gamma[2, m, n] <- 0
}
}
}
"
dexp_modelstring = "
model{
# likelihood
for(i in 1:sample_size){
obs_Y[i] ~ dcat(pi_obs[i, 1:n_cat])
# regression
for(j in 1:n_cat){
log(phi[i, j]) <- beta[j,1:dim_x] %*% x[i,1:dim_x]
pi[i, j] <- phi[i, j] / sum(phi[i, 1:n_cat])
}
for(k in 1:n_cat){
for(j in 1:n_cat){
log(phistar[i, k, j]) <- gamma[k, j, 1:dim_z] %*% z[i,1:dim_z]
pistar[i, k, j] <- phistar[i, k, j] / (sum(phistar[i, 1:n_cat, j]))
}
pi_obs[i, k] <- sum(pistar[i, k, 1:n_cat] * pi[i, 1:n_cat])
}
}
# reference categories
#beta[n_cat, 1:dim_x] <- 0
#gamma[n_cat, 1:n_cat, 1:dim_z] <- 0
# priors
for(l in 1:dim_x){
beta[1, l] ~ ddexp(dexp_mu_beta[1, l], dexp_b_beta[1, l])
beta[2, l] <- 0
}
for(m in 1:n_cat){
for(n in 1:dim_z){
gamma[1, m, n] ~ ddexp(dexp_mu_gamma[1, m, n], dexp_b_gamma[1, m, n])
gamma[2, m, n] <- 0
}
}
}
"
selected_model = ifelse(prior == "t", t_modelstring,
ifelse(prior == "uniform", unif_modelstring,
ifelse(prior == "normal", normal_modelstring,
ifelse(prior == "dexp", dexp_modelstring,
stop("Please select a prior distribution.")))))
return(selected_model)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.