Nothing
estimatePureRisk <- function(obj, x) {
check_object(obj)
new.data <- check_risk.data(x, obj$risk.obj$obj.list$covars.orig, obj$risk.obj$data)
ret <- estimatePureRisk_main(new.data, obj)
ret
}
estimatePureRisk_main <- function(risk.data, obj) {
var.data <- getVarianceForData(risk.data, obj$risk.obj$data, obj$risk.obj$obj.list,
obj$risk.obj$infl)
ret <- list()
tmp <- var.data[["rv", exact=TRUE]]
if (!is.null(tmp)) ret[["var"]] <- tmp
tmp <- var.data[["rv.T", exact=TRUE]]
if (!is.null(tmp)) ret[["var.estimated"]] <- tmp
tmp <- var.data[["rv.F", exact=TRUE]]
if (!is.null(tmp)) ret[["var.design"]] <- tmp
ret
}
getRobustVarForEst <- function(infl) {
lstnms <- c("infl", "infl.T", "infl.F")
prmnms <- c("infl.", "infl2.", "infl3.")
prmlen <- nchar(prmnms)
m <- length(prmnms)
ret <- list()
nms <- names(infl)
for (nm in nms) {
res <- list()
lst <- infl[[nm]]
all <- names(lst)
for (i in 1:m) {
tmp <- substr(all, 1, prmlen[i]) == prmnms[i]
all2 <- all[tmp]
if (!length(all2)) next
for (v in all2) res[[v]] <- robustvariance(lst[[v]])
}
ret[[nm]] <- res
}
ret
}
setUpRiskData_catcovars <- function(data, covars, obj) {
catvars <- obj[["catvars", exact=TRUE]]
if (!length(catvars)) return(data)
tmp <- covars %in% catvars
if (!any(tmp)) return(data)
vars <- covars[tmp]
varlevels <- obj[["varlevels", exact=TRUE]]
if (!length(varlevels)) stop("INTERNAL CODING ERROR 1")
ii <- 0
for (v in vars) {
vec <- data[, v, drop=TRUE]
tmp <- !is.na(vec)
vec <- vec[tmp]
uvec <- unique(vec)
if (length(uvec) > 1) next
levs <- varlevels[[v, exact=TRUE]]
if (!length(levs)) stop("INTERNAL CODING ERROR 2")
tmp <- !(levs %in% uvec)
levs <- levs[tmp]
if (!length(levs)) stop("INTERNAL CODING ERROR 3")
# Add a dummy row to the data
ii <- ii + 1
row <- data[1, , drop=FALSE]
row[1, v] <- levs[1]
rownames(row) <- paste0("...row..", ii)
data <- rbind(data, row)
}
for (v in vars) data[, v] <- factor(data[, v, drop=TRUE])
data
}
setUpRiskData <- function(data, covars, beta, obj) {
rn <- rownames(data)
if (is.null(rn)) rn <- as.character(1:nrow(data))
beta.nms <- names(beta)
nr0 <- nrow(data)
# Watch out for categorical covariates which are constant in data because
# model.matrix will throw an error
data <- setUpRiskData_catcovars(data, covars, obj)
rn <- rownames(data)
# Initialize return matrix to 0
ret <- matrix(data=0, nrow=nrow(data), ncol=length(beta))
rownames(ret) <- rn
colnames(ret) <- beta.nms
# Be careful with categorical covariates
mat <- getModelMatrix(data, covars, rem.intercept=TRUE)
cx <- colnames(mat)
tmp <- cx %in% beta.nms
miss <- cx[!tmp]
cx <- cx[tmp]
if (length(miss)) {
str <- paste0("'", miss, "'")
str <- paste0(str, collapse=", ")
msg <- paste0("The risk data model matrix has columns ", str,
" that are not covariates. They will be dropped")
warning(msg)
}
if (!length(cx)) {
warning("No common variables between covars and risk data model matrix")
return(NULL)
}
mat <- mat[, cx, drop=FALSE]
ret[rownames(mat), cx] <- mat
# Remove rows if dummy rows were added
if (nrow(ret) > nr0) ret <- ret[1:nr0, , drop=FALSE]
ret
}
myPasteCols <- function(x, sep="*") {
nc <- ncol(x)
ret <- x[, 1, drop=TRUE]
if (nc > 1) {
for (i in 2:nc) ret <- paste(ret, x[, i, drop=TRUE], sep=sep)
}
ret
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.