Nothing
#' Create a PK/Indirect response model
#'
#' Use to create a PK/Indirect response model.
#'
#' @inheritParams pkmodel
#' @param isSequential Set to \code{TRUE} to freeze PK fixed effects and convert
#' the corresponding random effects into covariates as well as remove the PK observed variable from the model.
#' @param isPkFrozen Set to \code{TRUE} to freeze PK fixed effects and remove
#' the corresponding random effects as well as the PK observed variable from the model.
#' @param hasEffectsCompartment Set to \code{TRUE} to include an effect compartment into the model.
#' @param indirectType Type of drug actions for the indirect response model.
#' Options are \code{"LimitedStimulation"}, \code{"InfiniteStimulation"}, \code{"LimitedInhibition"},
#' \code{"InverseInhibition"}, \code{"LinearStimulation"}, or \code{"LogLinearStimulation"}.
#' @param isBuildup Set to \code{FALSE} to have the drug actions affect
#' the loss/degradation instead of the production.
#' @param isExponent Set to \code{TRUE} to add an exponent parameter to the drug action term.
#' @param indirectFrozen Set to \code{TRUE} to freeze PD fixed effects and remove
#' the corresponding random effects as well as the PD observed variable from the model.
#' @inheritDotParams pkindirectmodel_MappingParameters
#'
#' @inheritSection pkmodel_MappingParameters Column mapping
#' @return \code{NlmePmlModel} object
#' @examples
#' model <- pkindirectmodel(
#' parameterization = "Micro",
#' data = pkpdData,
#' ID = "ID",
#' Time = "Time",
#' A1 = "Dose",
#' CObs = "CObs",
#' EObs = "EObs"
#' )
#'
#' # View PML Code
#' print(model)
#'
#' @export pkindirectmodel
pkindirectmodel <- function(isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isSequential = FALSE,
isPkFrozen = FALSE,
hasEffectsCompartment = FALSE,
indirectType = "LimitedStimulation",
isBuildup = TRUE,
isExponent = FALSE,
indirectFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...) {
if (isFractionExcreted) {
hasEliminationComp <- TRUE
}
if (hasEliminationComp) {
isClosedForm <- FALSE
}
if (isDuration) {
infusionAllowed <- TRUE
}
parameterization <- .check_parameterization(parameterization)
absorption <- .check_absorption(absorption)
# Check for indirect model type and assign value
if (indirectType %in% .indirectTypeNames) {
indirectType <-
which(indirectType == .indirectTypeNames, arr.ind = TRUE)
} else {
stop(
"indirectType argument must be one of 'LimitedStimulation', 'InfiniteStimulation', 'LimitedInhibition', 'InverseInhibition', 'LinearStimulation', 'LogLinearStimulation'"
)
}
if (!hasArg(isClosedForm) &&
(absorption == Gamma ||
absorption == Weibull || absorption == InverseGaussian)) {
isClosedForm <- FALSE
}
checkPKParams(
hasEliminationComp,
isClosedForm,
numCompartments,
parameterization,
isSaturating,
isFractionExcreted,
absorption
)
if (isSequential && isPkFrozen) {
stop("isSequential and isPkFrozen cannot both be set to TRUE")
}
# Errors related to columnMap
if (columnMap) {
Columns <- .get_columnsVector(match.call()[[1]], isSequential)
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
.check_data5ID(data, isPopulation, ID)
.check_PKArgs(
absorption = absorption,
parameterization = parameterization,
hasEliminationComp = hasEliminationComp,
infusionAllowed = infusionAllowed,
isDuration = isDuration,
isSequential = isSequential,
Columns = Columns,
...
)
.check_SequentialParams(
isSequential,
isTlag,
absorption,
parameterization,
isSaturating,
isFractionExcreted,
numCompartments,
Columns = Columns,
...
)
# Check if missing EObs Column
if (is.null(EObs) && indirectFrozen == FALSE) {
warning("'EObs' column not mapped")
}
.check_column_mappings(columnNamesToInclude, data)
}
indirectParams <- NlmeIndirectParameters(
type = indirectType,
hasEffectsCompartment = hasEffectsCompartment,
isBuildup = isBuildup,
isExponent = isExponent,
frozen = indirectFrozen
)
pkParams <- NlmePkParameters(
parameterization = NlmeModelParameterization(parameterization),
absorption = NlmeModelAbsorption(absorption),
numCompartments = numCompartments,
isTlag = isTlag,
hasEliminationComp = hasEliminationComp,
isFractionExcreted = isFractionExcreted,
isSaturating = isSaturating,
infusionAllowed = infusionAllowed,
isDuration = isDuration,
isClosedForm = isClosedForm,
isSequential = isSequential,
isPkFrozen = isPkFrozen
)
if (!indirectFrozen) {
pdresidual <- NlmeResidualEffect(
errorType = ERR_ADDITIVE,
effectName = "E"
)
} else {
pdresidual <- NULL
}
if (!isPkFrozen) {
if (parameterization == Macro1 || parameterization == Macro) {
pkresidual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "C1",
frozen = isSequential
)
} else {
pkresidual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "C",
frozen = isSequential
)
}
} else {
pkresidual <- NULL
}
if (hasEliminationComp) {
a0residual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "A0",
frozen = isSequential
)
} else {
a0residual <- NULL
}
if (isSequential) {
emod <- c(a0residual, pdresidual)
} else {
emod <- c(a0residual, pdresidual, pkresidual)
}
if (!is.null(emod)) {
errorModel <- NlmeErrorModel(emod)
} else {
errorModel <- NlmeErrorModel()
}
model <- NlmePmlModel(
modelType = PkIndirect,
isPopulation = isPopulation,
indirectModelAttrs = indirectParams,
pkModelAttrs = pkParams,
hasEffectsCompartment = hasEffectsCompartment,
errorModel = errorModel,
modelInfo = NlmePmlModelInfo(modelName, workingDir)
)
model <- createPkStructuralParameters(model)
model <- createIndirectStructuralParameters(model)
model <- generatePMLModel(model)
if (columnMap) {
model <- .map_indirectModels(model,
data,
isSequential,
Columns = Columns,
...
)
} else if (!is.null(data)) {
initColMapping(model) <- data
if (isSequential) {
initRandParamsMapping(model) <- data
}
}
return(model)
}
.map_indirectModels <- function(model,
data,
isSequential,
Columns,
...) {
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
initColMapping(model) <- data
modelColumnMapping(model) <- c(
id = ID,
A1 = A1,
Aa = Aa,
A = A,
A0Obs = A0Obs,
A1_Rate = A1_Rate,
A1_Duration = A1_Duration,
A1Strip = A1Strip,
Aa_Rate = Aa_Rate,
Aa_Duration = Aa_Duration,
A_Rate = A_Rate,
A_Duration = A_Duration,
CObs = CObs,
C1Obs = C1Obs,
EObs = EObs,
time = Time
)
if (isSequential) {
# For now we are assuming randomParamterValues must be in primary dataset, will support alt data in GUI
initRandParamsMapping(model) <- data
modelRandParamsMapping(model) <- c(
nV = nV,
nV2 = nV2,
nV3 = nV3,
nA = nA,
nCl = nCl,
nCl2 = nCl2,
nCl3 = nCl3,
nAlpha = nAlpha,
nKa = nKa,
nKe = nKe,
nB = nB,
nBeta = nBeta,
nC = nC,
nGamma = nGamma,
nK12 = nK12,
nK21 = nK21,
nK13 = nK13,
nK31 = nK31,
nKm = nKm,
nVmax = nVmax,
nFe = nFe,
nMeanDelayTime = nMeanDelayTime,
nShapeParam = nShapeParam,
nShapeParamMinusOne = nShapeParamMinusOne,
nTlag = nTlag
)
}
model
}
.get_columnsVector <-
function(ParentFunctionName, isSequential = FALSE) {
ParentFunctionName <-
as.character(ParentFunctionName)[length(ParentFunctionName)]
PKColumns <- c(
"ID",
"Time",
"A1",
"Aa",
"A",
"A1_Rate",
"A1_Duration",
"Aa_Rate",
"Aa_Duration",
"A_Rate",
"A_Duration",
"A1Strip",
"CObs",
"C1Obs",
"A0Obs"
)
EmaxColumns <- c("ID", "EObs", "C")
sequentialColumns <- c(
"nV",
"nV2",
"nV3",
"nA",
"nCl",
"nCl2",
"nCl3",
"nAlpha",
"nKa",
"nKe",
"nB",
"nBeta",
"nC",
"nGamma",
"nK12",
"nK21",
"nK13",
"nK31",
"nKm",
"nVmax",
"nFe",
"nMeanDelayTime",
"nShapeParam",
"nShapeParamMinusOne",
"nTlag"
)
if (ParentFunctionName == "pkmodel") {
Columns <- PKColumns
} else if (ParentFunctionName %in% c("emaxmodel", "linearmodel")) {
Columns <- EmaxColumns
} else {
Columns <- union(PKColumns, EmaxColumns)
if (isSequential) {
Columns <- c(Columns, sequentialColumns)
}
}
Columns
}
.check_IndirectSequentialArg <- function(Arg, Condition) {
if (is.null(Arg)) {
if (Condition) {
stop(
"Must specify ",
deparse(substitute(Arg, env = environment())),
" if isSequential = TRUE"
)
}
}
}
.check_SequentialParams <-
function(isSequential,
isTlag,
absorption,
parameterization,
isSaturating,
isFractionExcreted,
numCompartments,
Columns = Columns,
...) {
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
if (!isSequential) {
return(TRUE)
}
.check_IndirectSequentialArg(nTlag, isTlag)
.check_IndirectSequentialArg(
nMeanDelayTime,
absorption %in% c(Gamma, Weibull, InverseGaussian)
)
.check_IndirectSequentialArg(nShapeParam, absorption == InverseGaussian)
.check_IndirectSequentialArg(nShapeParamMinusOne, absorption %in% c(Gamma, Weibull))
.check_IndirectSequentialArg(nV, parameterization != Macro)
.check_IndirectSequentialArg(nA, parameterization == Macro)
.check_IndirectSequentialArg(nCl, parameterization == Clearance &&
isSaturating == FALSE)
.check_IndirectSequentialArg(nKm, isSaturating == TRUE)
.check_IndirectSequentialArg(nVmax, isSaturating == TRUE)
.check_IndirectSequentialArg(nKe, parameterization == Micro)
.check_IndirectSequentialArg(nFe, isFractionExcreted)
# nKa must be mapped for all parameterization if absorption = Extravascular
.check_IndirectSequentialArg(nKa, absorption == Extravascular)
.check_IndirectSequentialArg(nAlpha, parameterization == Macro1 ||
parameterization == Macro)
if (numCompartments >= 2) {
.check_IndirectSequentialArg(nB, parameterization == Macro ||
parameterization == Macro1)
.check_IndirectSequentialArg(
nBeta,
parameterization == Macro ||
parameterization == Macro1
)
.check_IndirectSequentialArg(nK12, parameterization == Micro)
.check_IndirectSequentialArg(nK21, parameterization == Micro)
.check_IndirectSequentialArg(nV2, parameterization == Clearance)
.check_IndirectSequentialArg(nCl2, parameterization == Clearance)
}
if (numCompartments == 3) {
.check_IndirectSequentialArg(nC, parameterization == Macro ||
parameterization == Macro1)
.check_IndirectSequentialArg(
nGamma,
parameterization == Macro ||
parameterization == Macro1
)
.check_IndirectSequentialArg(nK13, parameterization == Micro)
.check_IndirectSequentialArg(nK31, parameterization == Micro)
.check_IndirectSequentialArg(nV3, parameterization == Clearance)
.check_IndirectSequentialArg(nCl3, parameterization == Clearance)
}
}
#' PK Indirect model mapping parameters
#'
#' PK Indirect mapping parameters
#'
#' @param ID Column mapping argument for input dataset column(s) that identify
#' individual data profiles. Only applicable to population models \code{isPopulation = TRUE}.
#'
#' @param Time Column mapping argument that represents the input dataset column
#' for the relative time used in a study and only applicable to time-based models.
#'
#' @param A1 Column mapping argument that represents the input dataset column
#' for the amount of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"} and parameterization set
#' to either \code{"Clearance"},\code{"Micro"}, or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"}, \code{"InverseGaussian"},
#' or \code{"Weibull"}
#' }
#'
#'
#' @param Aa Column mapping argument that represents the input dataset column
#' for the amount of drug administered and only applicable to models with \code{absorption = "FirstOrder"}.
#'
#' @param A Column mapping argument that represents the input dataset column
#' for the amount of drug administered and only applicable to models with
#' \code{absorption = "Intravenous"} and \code{parameterization = "Macro1"}.
#'
#' @param A1_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"}, \code{infusionAllowed = TRUE}
#' and parameterization set to either \code{"Clearance"},\code{"Micro"} or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"}, \code{"InverseGaussian"},
#' or \code{"Weibull"} and \code{infusionAllowed = TRUE}
#' }
#'
#' @param A1_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"}, \code{infusionAllowed = TRUE} with
#' \code{isDuration = TRUE} and parameterization set to either \code{"Clearance"},\code{"Micro"}
#' or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"}, \code{"InverseGaussian"},
#' or \code{"Weibull"} and \code{infusionAllowed = TRUE} with \code{isDuration = TRUE}
#' }
#'
#' @param Aa_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered and only applicable to models with \code{absorption = "FirstOrder"},
#' \code{infusionAllowed = TRUE}.
#'
#' @param Aa_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered and only applicable to models with \code{absorption = "FirstOrder"},
#' \code{infusionAllowed = TRUE}, and \code{isDuration = TRUE}.
#'
#' @param A_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered and only applicable to models with \code{absorption = "Intravenous"},
#' \code{infusionAllowed = TRUE}, and \code{parameterization = "Macro1"}.
#'
#' @param A_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered and only applicable to models with \code{absorption = "Intravenous"},
#' \code{infusionAllowed = TRUE}, \code{isDuration = TRUE}, and \code{parameterization = "Macro1"}.
#'
#' @param A1Strip Column mapping argument that represents the input dataset column
#' for the stripping dose and only applicable to models with \code{parameterization = "Macro"}.
#'
#' @param CObs Column mapping argument that represents the input dataset column
#' for the observations of drug concentration in the central compartment and only applicable
#' to models with \code{parameterization} being either set to either \code{"Clearance"} or \code{"Micro"}.
#'
#' @param C1Obs Column mapping argument that represents the input dataset column
#' for the observations of drug concentration in the central compartment and only applicable
#' to models with \code{parameterization} being either set to either \code{"Macro"} or \code{"Macro1"}.
#'
#' @param A0Obs Column mapping argument that represents the input dataset column
#' for the observed amount of drug in the elimination compartment. (\code{hasEliminationComp = TRUE}).
#'
#' @param EObs Column mapping argument that represents the input dataset column
#' for the observed drug effect.
#'
#' @param nV If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nV}.
#'
#' @param nV2 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nV2}.
#'
#' @param nV3 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nV3}.
#'
#' @param nCl If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nCl}.
#'
#' @param nCl2 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nCl2}.
#'
#' @param nCl3 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nCl3}.
#'
#' @param nKa If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nKa}.
#'
#' @param nA If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nA}.
#'
#' @param nAlpha If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nAlpha}.
#'
#' @param nB If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nB}.
#'
#' @param nBeta If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nBeta}.
#'
#' @param nC If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nC}.
#'
#' @param nGamma If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nGamma}.
#'
#' @param nKe If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nKe}.
#'
#' @param nK12 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nK12}.
#'
#' @param nK21 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nK21}.
#'
#' @param nK13 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nK13}.
#'
#' @param nK31 If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nK31}.
#'
#' @param nTlag If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nTlag}.
#'
#' @param nKm If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nKm}.
#'
#' @param nVmax If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nVmax}.
#'
#' @param nFe If \code{isSequential = TRUE} and \code{isFractionExcreted = TRUE},
#' mapped to the input dataset column that lists the values for random effect \code{nFe}.
#'
#' @param nMeanDelayTime If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nMeanDelayTime}.
#'
#' @param nShapeParam If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nShapeParam}.
#'
#' @param nShapeParamMinusOne If \code{isSequential = TRUE}, mapped to the input dataset column
#' that lists the values for random effect \code{nShapeParamMinusOne}.
#' @keywords internal
pkindirectmodel_MappingParameters <- function(ID = NULL,
Time = NULL,
A1 = NULL,
Aa = NULL,
A = NULL,
A1_Rate = NULL,
A1_Duration = NULL,
Aa_Rate = NULL,
Aa_Duration = NULL,
A_Rate = NULL,
A_Duration = NULL,
A1Strip = NULL,
CObs = NULL,
C1Obs = NULL,
A0Obs = NULL,
EObs = NULL,
nV = NULL,
nV2 = NULL,
nV3 = NULL,
nCl = NULL,
nCl2 = NULL,
nCl3 = NULL,
nKa = NULL,
nA = NULL,
nAlpha = NULL,
nB = NULL,
nBeta = NULL,
nC = NULL,
nGamma = NULL,
nKe = NULL,
nK12 = NULL,
nK21 = NULL,
nK13 = NULL,
nK31 = NULL,
nTlag = NULL,
nKm = NULL,
nVmax = NULL,
nFe = NULL,
nMeanDelayTime = NULL,
nShapeParamMinusOne = NULL,
nShapeParam = NULL) {
NULL
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.