Nothing
#' Creates a PK model
#'
#' Use to create a PK model
#' @param isPopulation Is this a population model \code{TRUE} or individual model \code{FALSE}?
#' @param parameterization Type of parameterization. Options are \code{"Clearance"}, \code{"Micro"},
#' \code{"Macro"}, or \code{"Macro1"}.
#' @param absorption Type of absorption. Options are \code{"Intravenous"}, \code{"FirstOrder"},
#' \code{"Gamma"}, \code{"InverseGaussian"}, \code{"Weibull"} .
#' @param numCompartments Value of either \code{1}, \code{2}, or \code{3}.
#' @param isClosedForm Set to \code{TRUE} to convert model from a differential equation to close form.
#' @param isTlag Set to \code{TRUE} to add a lag time parameter to the model.
#' @param hasEliminationComp Set to \code{TRUE} to add an elimination compartment to the model.
#' @param isFractionExcreted Set to \code{TRUE} if elimination compartment (\code{hasEliminationComp = TRUE})
#' contains a fraction excreted parameter.
#' @param isSaturating Set to \code{TRUE} to use Michaelis-Menten kinetics for elimination.
#' Only applicable to models with \code{paramteterization = "Clearance"}
#' @param infusionAllowed Set to \code{TRUE} if infusions allowed.
#' @param isDuration Set to \code{TRUE} if infusions use duration instead of rate
#' (must also set \code{infusionAllowed = TRUE}).
#' @param isStdevFrozen Set to \code{TRUE} to freeze value of standard deviation of residual error variable.
#' @param data Input dataset
#' @param columnMap If \code{TRUE} (default) column mapping arguments are required.
#' Set to \code{FALSE} to manually map columns after defining model using \code{\link{colMapping}}.
#' @param modelName Model name for subdirectory created for model output in current working directory.
#' @param workingDir Working directory to run the model. Current working directory will be used
#' if \code{workingDir} not specified.
#' @inheritDotParams pkmodel_MappingParameters
#'
#' @inheritSection pkmodel_MappingParameters Column mapping
#'
#' @return \code{NlmePmlModel} object
#'
#' @examples
#' model <- pkmodel(
#' parameterization = "Clearance",
#' numCompartments = 2,
#' data = pkData,
#' ID = "Subject",
#' Time = "Act_Time",
#' A1 = "Amount",
#' CObs = "Conc"
#' )
#'
#' # View the model as well as its associated column mappings
#' print(model)
#'
#' @export pkmodel
pkmodel <- function(isPopulation = TRUE,
parameterization = "Clearance",
absorption = "Intravenous",
numCompartments = 1,
isClosedForm = TRUE,
isTlag = FALSE,
hasEliminationComp = FALSE,
isFractionExcreted = FALSE,
isSaturating = FALSE,
infusionAllowed = FALSE,
isDuration = FALSE,
isStdevFrozen = FALSE,
data = NULL,
columnMap = TRUE,
modelName = "",
workingDir = "",
...) {
if (isDuration) {
infusionAllowed <- TRUE
}
if (isFractionExcreted) {
hasEliminationComp <- TRUE
}
parameterization <- .check_parameterization(parameterization)
absorption <- .check_absorption(absorption)
if (!hasArg(isClosedForm) &&
(absorption == Gamma ||
absorption == Weibull || absorption == InverseGaussian)) {
isClosedForm <- FALSE
}
checkPKParams(
hasEliminationComp,
isClosedForm,
numCompartments,
parameterization,
isSaturating,
isFractionExcreted,
absorption
)
if (columnMap) {
Columns <- .get_columnsVector(match.call()[[1]])
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
.check_data5ID(data, isPopulation, ID)
.check_PKArgs(
absorption = absorption,
parameterization = parameterization,
hasEliminationComp = hasEliminationComp,
infusionAllowed = infusionAllowed,
isDuration = isDuration,
Columns = Columns,
...
)
.check_column_mappings(columnNamesToInclude, data)
}
pkParams <- NlmePkParameters(
parameterization = NlmeModelParameterization(parameterization),
absorption = NlmeModelAbsorption(absorption),
numCompartments = numCompartments,
isTlag = isTlag,
hasEliminationComp = hasEliminationComp,
isFractionExcreted = isFractionExcreted,
isSaturating = isSaturating,
infusionAllowed = infusionAllowed,
isDuration = isDuration,
isClosedForm = isClosedForm,
isSequential = FALSE
)
if (parameterization == Macro1 || parameterization == Macro) {
residual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "C1",
frozen = isStdevFrozen
)
} else {
residual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "C",
frozen = isStdevFrozen
)
}
if (hasEliminationComp) {
a0residual <- NlmeResidualEffect(
errorType = ERR_MULTIPLICATIVE,
effectName = "A0",
frozen = isStdevFrozen
)
errorModel <-
NlmeErrorModel(c(residual, a0residual)) # Combine resiual with a0 residual if has elimination compartment
} else {
errorModel <- NlmeErrorModel(c(residual))
}
model <- NlmePmlModel(
modelType = PARAM_PK,
isPopulation = isPopulation,
pkModelAttrs = pkParams,
errorModel = errorModel,
modelInfo = NlmePmlModelInfo(modelName, workingDir)
)
# look into this function, could also be incorrectly setup
model <- createPkStructuralParameters(model)
model <- generatePMLModel(model)
if (columnMap) {
initColMapping(model) <- data
# Perform column mapping
modelColumnMapping(model) <- c(
id = ID,
A1 = A1,
Aa = Aa,
A = A,
A0Obs = A0Obs,
A1_Rate = A1_Rate,
A1_Duration = A1_Duration,
A1Strip = A1Strip,
Aa_Rate = Aa_Rate,
Aa_Duration = Aa_Duration,
A_Rate = A_Rate,
A_Duration = A_Duration,
CObs = CObs,
C1Obs = C1Obs,
time = Time
)
} else if (!is.null(data)) {
initColMapping(model) <- data
}
return(model)
}
.check_parameterization <- function(parameterization) {
# Check for correct paremeterization and assign value
if (parameterization %in% c("Clearance", "Macro", "Macro1", "Micro")) {
parameterization <- eval(parse(text = parameterization))
} else {
stop("parameterization must be one of 'Clearance', 'Macro', 'Macro1', 'Micro'")
}
parameterization
}
.check_absorption <- function(absorption) {
if (absorption == "FirstOrder") {
absorption <- "Extravascular"
}
# Check for correct absorption type and assign a value
if (absorption %in% c(
"Intravenous",
"Extravascular",
"Gamma",
"Weibull",
"InverseGaussian"
)) {
absorption <- eval(parse(text = absorption))
} else {
stop(
"absorption must be one of 'FirstOrder', 'Intravenous', 'Gamma', 'Weibull' or 'InverseGaussian'"
)
}
absorption
}
.check_data5ID <- function(data, isPopulation, ID) {
assertthat::assert_that(!is.null(data), msg = "Missing data argument")
if (isPopulation == TRUE) {
assertthat::assert_that(!is.null(ID),
msg = "Must specify ID if 'isPopulation = TRUE'"
)
assertthat::assert_that(length(strsplit(ID, ",")[[1]]) <= 5,
msg = "number of columns mapped to `ID` must be less than or equal to 5"
)
}
}
.check_PKArgs <-
function(absorption,
parameterization,
hasEliminationComp,
infusionAllowed,
isDuration,
isSequential = FALSE,
Columns,
...) {
# initialize mapping values
for (Column in Columns) {
eval(parse(text = paste(Column, "<- NULL")))
}
dotsPrepared <- .transform_EllipsisToVector(...)
# note that current function initialize all model variables
# to mapped columns in current envir
columnNamesToInclude <- .prepare_dotargs(dotsPrepared, Columns)
assertthat::assert_that(!is.null(Time), msg = "'Time' column not mapped")
if (absorption == Intravenous) {
if (parameterization == Macro1) {
assertthat::assert_that(!is.null(A),
msg = "Must specify A if using absorption = 'Intravenous' and parameterization = 'Macro1'"
)
} else {
assertthat::assert_that(!is.null(A1),
msg = "Must specify A1 if using absorption = 'Intravenous','Gamma', 'Weibull' or 'InverseGaussian'"
)
}
} else if (absorption == Extravascular) {
assertthat::assert_that(!is.null(Aa),
msg = "Must specify Aa if using absorption = 'FirstOrder'"
)
}
if (parameterization == Clearance ||
parameterization == Micro) {
if (hasEliminationComp == TRUE && is.null(A0Obs)) {
warning("A0Obs column not mapped")
}
}
if (is.null(A1Strip) && parameterization == Macro) {
warning("A1Strip column not mapped")
} else if (parameterization != Macro && !is.null(A1Strip)) {
stop("Must set parameterization = 'Macro' if setting value for A1Strip")
}
if (infusionAllowed == TRUE && absorption == Intravenous) {
if (parameterization == Macro1) {
if (isDuration) {
assertthat::assert_that(!is.null(A_Duration),
msg = "Must specify A_Duration if using parameterization = 'Macro1' and 'infusionAllowed = TRUE' and 'isDuration = TRUE'"
)
} else {
assertthat::assert_that(!is.null(A_Rate),
msg = "Must specify A_Rate if using parameterization = 'Macro1' and 'infusionAllowed = TRUE'"
)
}
} else {
if (isDuration == TRUE) {
assertthat::assert_that(!is.null(A1_Duration),
msg = "Must specify A1_Duration if using 'infusionAllowed = TRUE' and isDuration = TRUE"
)
} else {
assertthat::assert_that(!is.null(A1_Rate),
msg = "Must specify A1_Rate if using 'infusionAllowed = TRUE'"
)
}
}
}
if (infusionAllowed == TRUE && absorption == Extravascular) {
if (isDuration == TRUE) {
assertthat::assert_that(!is.null(Aa_Duration),
msg = "Must specify Aa_Duration if using 'infusionAllowed = TRUE' and isDuration = TRUE"
)
} else {
assertthat::assert_that(!is.null(Aa_Rate),
msg = "Must specify Aa_Rate if using 'infusionAllowed = TRUE'"
)
}
}
if (!isSequential) {
if (parameterization == Macro1 || parameterization == Macro) {
if (is.null(C1Obs)) {
warning("C1Obs column not mapped")
}
} else {
if (is.null(CObs)) {
warning("CObs column not mapped")
}
}
}
}
.prepare_dotargs <- function(dotsPrepared, cols) {
modelTermsInMapping <- names(dotsPrepared)
if (any(duplicated(modelTermsInMapping))) {
stop(
"Duplicated model terms are recognized in mapping:",
paste(modelTermsInMapping[duplicated(modelTermsInMapping)])
)
} else if (any(duplicated(dotsPrepared))) {
stop(
"Duplicated column names are recognized in mapping:",
paste(dotsPrepared[duplicated(dotsPrepared)])
)
}
modelTermsToInclude <- intersect(cols, modelTermsInMapping)
columnNamesToInclude <- dotsPrepared[modelTermsInMapping %in% cols]
if (length(modelTermsToInclude) != length(modelTermsInMapping)) {
# some dots arguments are not recognized
# try id and time
if ("id" %in% modelTermsInMapping) {
if ("ID" %in% modelTermsInMapping) {
stop("Both 'ID' and 'id' are presented in mapping.")
} else {
idMapped <- dotsPrepared[modelTermsInMapping == "id"]
names(idMapped) <- "ID"
columnNamesToInclude <- c(columnNamesToInclude, idMapped)
modelTermsToInclude <- names(columnNamesToInclude)
modelTermsInMapping <-
replace(modelTermsInMapping, modelTermsInMapping == "id", "ID")
}
}
if ("time" %in% modelTermsInMapping && "Time" %in% cols) {
if ("Time" %in% modelTermsInMapping) {
stop("Both 'Time' and 'time' are presented in mapping.")
} else {
timeMapped <- dotsPrepared[modelTermsInMapping == "time"]
names(timeMapped) <- "Time"
columnNamesToInclude <- c(columnNamesToInclude, timeMapped)
modelTermsToInclude <- names(columnNamesToInclude)
modelTermsInMapping <-
replace(modelTermsInMapping, modelTermsInMapping == "time", "Time")
}
}
if (length(modelTermsToInclude) != length(modelTermsInMapping)) {
warning(
"Current model terms were not found and won't be mapped: ",
paste(setdiff(modelTermsInMapping, modelTermsToInclude), collapse = ", ")
)
}
}
for (columnNameIndex in seq_along(columnNamesToInclude)) {
columnName <- columnNamesToInclude[columnNameIndex]
eval.parent(parse(text = paste0(names(columnName), " = '", columnName, "'")))
}
columnNamesToInclude
}
#' PK model mapping parameters
#'
#' PK model mapping parameters
#'
#' @param ID Column mapping argument for input dataset column(s) that identify
#' individual data profiles. Only applicable to population models \code{isPopulation = TRUE}.
#'
#' @param Time Column mapping argument that represents the input dataset column
#' for the relative time used in a study and only applicable to time-based models.
#'
#' @param A1 Column mapping argument that represents the input dataset column
#' for the amount of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"} and parameterization set
#' to either \code{"Clearance"},\code{"Micro"}, or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"},
#' \code{"InverseGaussian"}, or \code{"Weibull"}
#' }
#'
#' @param Aa Column mapping argument that represents the input dataset column
#' for the amount of drug administered and only applicable to models with \code{absorption = "FirstOrder"}.
#'
#' @param A Column mapping argument that represents the input dataset column
#' for the amount of drug administered and only applicable to models with
#' \code{absorption = "Intravenous"} and \code{parameterization = "Macro1"}.
#'
#' @param A1_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"}, \code{infusionAllowed = TRUE}
#' and parameterization set to either \code{"Clearance"},\code{"Micro"} or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"}, \code{"InverseGaussian"},
#' or \code{"Weibull"} and \code{infusionAllowed = TRUE}
#' }
#'
#' @param A1_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered. Only applicable to the following types of models:
#' \itemize{
#' \item Models with \code{absorption = "Intravenous"},\code{infusionAllowed = TRUE}
#' with \code{isDuration = TRUE} and parameterization set to either \code{"Clearance"},
#' \code{"Micro"} or \code{"Macro"}
#' \item Models with \code{absorption} set to either \code{"Gamma"}, \code{"InverseGaussian"},
#' or \code{"Weibull"} and \code{infusionAllowed = TRUE} with \code{isDuration = TRUE}
#' }
#'
#' @param Aa_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered and only applicable to models with \code{absorption = "FirstOrder"},
#' \code{infusionAllowed = TRUE}.
#'
#' @param Aa_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered and only applicable to models with \code{absorption = "FirstOrder"},
#' \code{infusionAllowed = TRUE}, and \code{isDuration = TRUE}.
#'
#' @param A_Rate Column mapping argument that represents the input dataset column
#' for the rate of drug administered and only applicable to models with \code{absorption = "Intravenous"},
#' \code{infusionAllowed = TRUE}, and \code{parameterization = "Macro1"}.
#'
#' @param A_Duration Column mapping argument that represents the input dataset column
#' for the duration of drug administered and only applicable to models with \code{absorption = "Intravenous"},
#' \code{infusionAllowed = TRUE}, \code{isDuration = TRUE}, and \code{parameterization = "Macro1"}.
#'
#' @param A1Strip Column mapping argument that represents the input dataset column
#' for the stripping dose and only applicable to models with \code{parameterization = "Macro"}.
#'
#' @param CObs Column mapping argument that represents the input dataset column
#' for the observations of drug concentration in the central compartment and only applicable
#' to models with \code{parameterization} being either set to either \code{"Clearance"} or \code{"Micro"}.
#'
#' @param C1Obs Column mapping argument that represents the input dataset column
#' for the observations of drug concentration in the central compartment and only applicable
#' to models with \code{parameterization} being either set to either \code{"Macro"} or \code{"Macro1"}.
#'
#' @param A0Obs Column mapping argument that represents the input dataset column
#' for the observed amount of drug in the elimination compartment. (\code{hasEliminationComp = TRUE}).
#' @section Column mapping:
#' Note that quoted and unquoted column names are supported. Please see \code{\link{colMapping}}.
#' @keywords internal
pkmodel_MappingParameters <- function(ID = NULL,
Time = NULL,
A1 = NULL,
Aa = NULL,
A = NULL,
A1_Rate = NULL,
A1_Duration = NULL,
Aa_Rate = NULL,
Aa_Duration = NULL,
A_Rate = NULL,
A_Duration = NULL,
A1Strip = NULL,
CObs = NULL,
C1Obs = NULL,
A0Obs = NULL) {
NULL
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.