Nothing
Peso=function(E,d,Utopia=FALSE){
#This function computes the weight being Volume = Weight x sqrt(n)/(n-1)!
n=length(d);
d=sort(d,index.return=T)$x
ordenI = sort (d, index.return =T)$ix #The permutation of the claims
orden = sort(ordenI,index.return =T)$ix #The inverse permutation
cardinal=sum(d<E) #Number of claimants such that di<E.
Dcardinal=sum(d[1:cardinal]);
Peso=0
if(Utopia==TRUE)
{
PesoUtopia=rep(0,n)
}
d = d[d<E]; #We work with the claims such that di<E.
if(cardinal==0)
{
Peso=E^(n-1)
}else{
S=0
while (S<=(2^(cardinal-1) - 1)){#By duality, we go through half of the coalitions.
Svector=as.numeric(intToBits(S)[1:n])
cT = length(d[Svector]);
dT=sum(d[which(Svector==1)]);
if (dT < E){#If the coalition belongs to family F, we compute the volume of its utopia game.
Peso = Peso+(-1)^cT*(E-dT)^(n-1);
if(Utopia==TRUE)
{
# Aproveitamos para gardar resultados necesarios para calcular xa o peso
# dos correspondentes xogos de utopía (os xogos de utopía de cada un dos xogadores de T):
axentesS = which(Svector==1); # Os xogadores de T
PesoUtopia[axentesS] = PesoUtopia[axentesS]+ (-1)^(cT-1)*(E-dT)^(n-1)
}
}
dCT = Dcardinal-dT; #Complementary coalition.
if (dCT < E){#If the complementary coalition belongs to family F, we compute the volume of its utopia game.
cCT = cardinal-cT;
Peso = Peso+(-1)^cCT*(E-dCT)^(n-1);
if(Utopia==TRUE)
{
#Igual que antes:
axentesNnoS = which(Svector[1:cardinal] == 0)# Os xogadores do complementario de T no xogo truncado
PesoUtopia[axentesNnoS] = PesoUtopia[axentesNnoS]+ (-1)^(cCT-1)*(E-dCT)^(n-1)
}
}
S=S+1
}}
if(Utopia==TRUE)
{
PesoUtopia=PesoUtopia[orden]
return(list(Peso=Peso,PesoUtopia=PesoUtopia))
}else
{
return(Peso)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.