R/koeppen_geiger.R

NULL
#' @description General climate classification after Koeppen - Geiger.
#' 
#' @param clim_norm average values (climate normals) for the desired period.
#' @param A_B_C_special_sub.classes logical. Sets if calculations have to consider sub-classes based on rain features in climate types A, B, and C  (see details). Default is \code{FALSE}.
#' @param clim.resume_verbose logical. If \code{TRUE} (default) a resume of the climatic indices used for the Koeppen - Geiger classification is added to the output.
#' @param class.nr logical. If \code{FALSE} (default) class is expressed by letters, otherwise by numbers (see details).
#' 
#'
#' @title Koeppen - Geiger's climate classification
#' @author Emanuele Eccel
#'
#' @return A one-line data frame reporting a resume of climatic features useful for the classification (if  \code{clim.resume_verbose} is \code{TRUE}), and one last field (1 type - or "climate" - plus 1 or 2 sub-types) reporting Koeppen - Geiger's climate classification. See details. 
#'
#' @details \code{clim_norm} is a monthly data frame of climate normals, with column names: "P", "Tn", "Tx", "Tm" (precipitation, minimum, maximum and mean temperature, respectively). It can be the output of function \code{\link{climate}}.
#' 
#' Koeppen - Geiger's classification is based on Trewartha and Lyle, 1980. The function also holds for Southern emisphere, except for the "Gange" sub-type ("Ag" and "Cg"). Type "H" (highland climate) and sub-types "Bn" and "Cn" (where n stands for Nebel) are never attributed, being based on a qualitative description in the quoted reference.
#' 
#' Sub-type "w" (wet-and-dry) or "m" (monsoon) in climate "A" is set according to the definition after Encyclopaedia Britannica (\url{http://www.britannica.com/EBchecked/topic/322068/Koppen-climate-classification}): if P in the 4 driest months is less than 1/5 of the wettest months and if both the 4 driest and wettest months are split over non-contiguous seasons (either 2 months per season or 1 and 3 months per season), then sub-type is "".
#' 
#' For climate "A", the letter "m" is attributed to the first sub-type.
#' 
#' Climates "Cx" have P[May + June] >= 1.3 P [Aug. + Sept.] in N emisphere, and P[Nov. + Dec.] >= 1.3 P[Febr. + March] in S emisphere.
#' 
#' \code{A_B_C_special_sub.classes}, if \code{TRUE}, adds a letter to the second sub-type of climates: "i" or "g" (climate A), "w" or "s" (climate B), and  "i", "g", or "x" (climate C).
#' 
#' The returned data frame contains the following fields:
#' 
#' \code{T_w.m} = temperature of the warmest month (degrees C)
#' 
#' \code{T_c.m} = temperature of the coldest month (degrees C)
#' 
#' \code{T_avg} = average temperature (degrees C)
#' 
#' \code{P_tot} = total precipitation depth (mm)
#' 
#' \code{P_wint} = precipitation depth in the 6 coldest (winter) months (mm)
#' 
#' \code{P_summ} = precipitation depth in the 6 warmest (summer) months (mm)
#' 
#' \code{P_d.m} = precipitation depth in the driest month (mm)
#' 
#' \code{P_d.m.summ} = precipitation depth in the driest month of "summer" half of the year (mm)
#' 
#' \code{P_d.m.wint} = precipitation depth in the driest month of "winter" half of the year (mm)
#' 
#' \code{P_w.m} = precipitation depth in the wettest month (mm)
#' 
#' \code{P_w.m.summ} = precipitation depth in the driest month of "summer" half of the year (mm)
#' 
#' \code{P_w.m.wint} = precipitation depth in the wettest month of "winter" half of the year (mm)
#' 
#' \code{T_4th_w.m} = temperature of the 4th warmest month (degrees C)
#' 
#' \code{class} = climatic class. If \code{class.nr}=\code{FALSE} (default), it results from the merging of "climate" (A to E) and sub-type(s). 
#' If \code{class.nr}=\code{TRUE} the class comes from the sum of the numeric equivalent of "type" (A,..E) + "first sub type" (only first letter),
#' according to the following scheme:
#' 
#'  A  B  C  D  E
#'  
#'  10 20 30 40 50  
#'  
#'  f  W  s  s  T -->  1
#'  
#'  w  S  w  w  F -->  2
#'  
#'  m     f  f    -->  3
#'  
#'
#' (e.g: Af = 11, Cw = 32, EF = 52)
#' 
#' @export
#'
#' @references 
#' Trewartha, G.T. and Lyle, H.H., 1980: An Introduction to Climate. MacGraw - Hill, 5th Ed. Appendix: Koeppen's Classification of Climates.
#'
#' @examples
#' data(Trent_climate)
#' # clima_81_10 is a list of data frames having climatic means of temperature and precipitation as 
#' # required by Koeppen - Geiger classification, each one referring to one station. 
#' # It can be the output of function climate.
#' class_clim_l<-lapply(clima_81_10, FUN=koeppen_geiger, A_B_C_special_sub.classes=TRUE)
#'
#' @seealso \code{\link{climate}}

koeppen_geiger<-function (clim_norm, A_B_C_special_sub.classes = FALSE, clim.resume_verbose=TRUE, class.nr=FALSE) 
{
  
  if (sum(is.na(clim_norm$Tm)) > 0 | sum(is.na(clim_norm$P)) > 
        0) 
    print("12 monthly values of temp. and prec. required!", 
          quote = F)
  else {
    T_warm_month <- max(clim_norm$Tm)
    T_cold_month <- min(clim_norm$Tm)
    T_avg <- mean(clim_norm$Tm)
    P_tot <- sum(clim_norm$P)
    wint_months <- order(clim_norm$Tm)[1:6]
    summ_months <- order(clim_norm$Tm)[7:12]
    if (1 %in% wint_months | 2 %in% wint_months) {
      autumn_months <- 9:11
      solst_months <- 5:7
      late.spring_early.summer_months <- 5:6
      late.summer_months <- 8:9
    } 
    else {
      autumn_months <- 3:5
      solst_months <- c(11:12, 1)
      late.spring_early.summer_months <- 11:12
      late.summer_months <- 2:3
    }
    P_wint.half <- sum(clim_norm$P[clim_norm$month %in% wint_months])
    P_summ.half <- sum(clim_norm$P[clim_norm$month %in% summ_months])
    P_driest_month <- min(clim_norm$P)
    P_driest_month_summ.half <- min(clim_norm$P[clim_norm$month %in% 
                                                  summ_months])
    P_driest_month_wint.half <- min(clim_norm$P[clim_norm$month %in% 
                                                  wint_months])
    P_wettest_month <- max(clim_norm$P)
    P_wettest_month_summ.half <- max(clim_norm$P[clim_norm$month %in% 
                                                   summ_months])
    P_wettest_month_wint.half <- max(clim_norm$P[clim_norm$month %in% 
                                                   wint_months])
    T_4th_warm_month <- sort(clim_norm$Tm, decreasing = TRUE)[4]
    matr_indices <- round(data.frame(T_warm_month, T_cold_month, 
                                     T_avg, P_tot, P_wint.half, P_summ.half, P_driest_month, 
                                     P_driest_month_summ.half, P_driest_month_wint.half, 
                                     P_wettest_month, P_wettest_month_summ.half, P_wettest_month_wint.half, 
                                     T_4th_warm_month), 1)
    names(matr_indices) <- c("T_w.m", "T_c.m", "T_avg", "P_tot", 
                             "P_wint", "P_summ", "P_d.m", "P_d.m.summ", "P_d.m.wint", 
                             "P_w.m", "P_w.m.summ", "P_w.m.wint", "T_4th_w.m")
    type <- NA
    thresh <- NULL
    sub.type_1 <- NULL
    sub.type_2 <- NULL
    rain.reg<-NULL
    if (T_cold_month >= 18) 
      type <- "A"
    if (T_cold_month < 18 & T_cold_month > -3 & T_warm_month >= 
          10) 
      type <- "C"
    if (T_cold_month <= -3 & T_warm_month >= 10) 
      type <- "D"
    if (T_warm_month < 10) 
      type <- "E"
    
    if (P_summ.half >= 0.7 * P_tot & P_tot < 20 * T_avg + 
          280) {
      type <- "B"
      rain.reg <- "summ"
      thresh <- 20 * T_avg + 280
    }    
    else if (P_wint.half >= 0.7 * P_tot & P_tot < 20 * T_avg) {
      type <- "B"
      rain.reg <- "wint"
      thresh <- 20 * T_avg
    }    
    else if (P_summ.half < 0.7 * P_tot & P_wint.half < 0.7 * 
               P_tot & P_tot < 20 * T_avg + 140) {
      type <- "B"
      thresh <- 20 * T_avg + 140
    }
    if (type == "A") {
      if (P_driest_month >= 60) 
        sub.type_1 <- "f"
      if (P_driest_month < 60) 
        sub.type_1 <- "w"
      if (P_driest_month < 60 & P_driest_month >= 100 - 
            P_tot/25) 
        sub.type_1 <- "m"
      if (order(clim_norm$P)[12] %in% autumn_months) 
        sub.type_2 <- "w'"
      if (order(clim_norm$P)[1] %in% solst_months) 
        sub.type_2 <- "s"
      dry.4 <- order(clim_norm$P)[1:4]
      wet.4 <- order(clim_norm$P)[9:12]
      seas.1 <- c(12, 1, 2)
      seas.2 <- 3:5
      seas.3 <- 6:8
      seas.4 <- 9:11
      if (sum(clim_norm$P[dry.4]) * 5 < sum(clim_norm$P[wet.4]) & 
            ((sum(dry.4 %in% c(seas.1, seas.3)) == 4 & sum(wet.4 %in% 
                                                             c(seas.2, seas.4)) == 4) | (sum(dry.4 %in% 
                                                                                               c(seas.2, seas.4)) == 4 & sum(wet.4 %in% c(seas.1, 
                                                                                                                                          seas.3)) == 4))) 
        sub.type_2 <- noquote("w\"")
      if (A_B_C_special_sub.classes == TRUE) {
        if (T_warm_month - T_cold_month < 5) 
          sub.type_2 <- paste(sub.type_2, "i", sep = "")
        if (1 %in% wint_months & order(clim_norm$Tm)[12] <= 
              6 & sum(order(clim_norm$P)[11:12] %in% 7:9) == 
              2) 
          sub.type_2 <- paste(sub.type_2, "g", sep = "")
      }
    }
    if (type == "B") {
      if (P_tot < thresh/2) 
        sub.type_1 <- "W"     
      else sub.type_1 <- "S"
      if (T_avg >= 18) 
        sub.type_2 <- "h"      
      else {
        if (T_warm_month < 18) 
          sub.type_2 <- "k'"        
        else sub.type_2 <- "k"
      }
      if (A_B_C_special_sub.classes == TRUE & !is.null(rain.reg)) {
        if (rain.reg == "summ") 
          sub.type_2 <- paste(sub.type_2, "w", sep = "")
        if (rain.reg == "wint") 
          sub.type_2 <- paste(sub.type_2, "s", sep = "")
      }
    }
    if (type == "C") {
      if (P_driest_month_summ.half < 30 & P_driest_month_summ.half < 
            P_wettest_month_wint.half/3) 
        sub.type_1 <- "s"
      else if (P_driest_month_wint.half < P_wettest_month_summ.half/10) 
        sub.type_1 <- "w"
      else sub.type_1 <- "f"
      if (T_warm_month >= 22) 
        sub.type_2 <- "a"
      else {
        if (T_4th_warm_month > 10) 
          sub.type_2 <- "b"
        else sub.type_2 <- "c"
      }
      if (A_B_C_special_sub.classes == TRUE) {
        if (T_warm_month - T_cold_month < 5) 
          sub.type_2 <- paste(sub.type_2, "i", sep = "")
        if (1 %in% wint_months & order(clim_norm$Tm)[12] <= 
              6 & sum(order(clim_norm$P)[11:12] %in% 7:9) == 
              2) 
          sub.type_2 <- paste(sub.type_2, "g", sep = "")
        if (order(clim_norm$P)[12] %in% late.spring_early.summer_months & 
              sum(clim_norm$P[late.spring_early.summer_months]) > 
              sum(clim_norm$P[late.summer_months]) * 1.3) 
          sub.type_2 <- paste(sub.type_2, "x", sep = "")
      }
    }
    if (type == "D") {
      if (P_driest_month_summ.half < 30 & P_driest_month_summ.half < 
            P_wettest_month_wint.half/3) 
        sub.type_1 <- "s"
      else if (P_driest_month_wint.half < P_wettest_month_summ.half/10) 
        sub.type_1 <- "w"
      else sub.type_1 <- "f"
      if (T_warm_month >= 22) 
        sub.type_2 <- "a"
      else {
        if (T_4th_warm_month > 10) 
          sub.type_2 <- "b"
        else sub.type_2 <- "c"
      }
      if (T_cold_month < -38) 
        sub.type_2 <- "d"
    }
    if (type == "E") {
      if (T_warm_month > 0) 
        sub.type_1 <- "T"
      else sub.type_1 <- "F"
      sub.type_2 <- NULL
    }
    if(class.nr == FALSE)
      {
      matr_climate <- data.frame(paste(type, sub.type_1, sub.type_2,sep = ""))
      } else
      {
      types_numbers<-seq(10,50,by=10)
      types_letters<-c("A","B","C","D","E")
      type_n <-types_numbers[types_letters==type]
      
      if(type=="A") types.2_letters<-c("f","w","m")
      if(type=="B") types.2_letters<-c("W","S")
      if(type=="C" | type=="D") types.2_letters<-c("s","w","f")
      if(type=="E") types.2_letters<-c("T","F")
      
      types.2_numbers<- 1:length(types.2_letters)
      
      type.2_n<-types.2_numbers[types.2_letters==sub.type_1]
      
      matr_climate <- data.frame(type_n + type.2_n)
      }
    
    names(matr_climate) <- "class"
    
    if(clim.resume_verbose == TRUE) matr_climate <- data.frame(matr_indices, matr_climate)
    return(matr_climate)
  }
}

Try the ClimClass package in your browser

Any scripts or data that you put into this service are public.

ClimClass documentation built on May 2, 2019, 2:20 p.m.