Nothing
test_that("clus_mle works with one contiuous covariate", {
data(data_3class)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class),
class = "clus_lme")
})
test_that("clus_mle works with two contiuous covariates", {
data(data_3class)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X1 + X2, name_class = "D",
name_clust = "id_Clus", data = data_3class),
class = "clus_lme")
})
test_that("clus_mle works with one covariate and subset", {
data(data_3class)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X1 + X2, name_class = "D",
name_clust = "id_Clus", data = data_3class,
subset = id_Clus %in% sample(1:30, 20, replace = FALSE)),
class = "clus_lme")
})
test_that("clus_mle works with one covariate and levl_class", {
data(data_3class)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X1 + X2, name_class = "D",
name_clust = "id_Clus", data = data_3class,
levl_class = c("1", "3", "2")),
class = "clus_lme")
})
test_that("clus_mle works with one covariate and boxcox transformation", {
data(data_3class_bcx)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X, name_class = "D",
name_clust = "id_Clus", data = data_3class_bcx,
boxcox = TRUE),
class = "clus_lme")
})
test_that("clus_mle works with transformed covariate", {
data(data_3class)
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ I(X1^2), name_class = "D",
name_clust = "id_Clus", data = data_3class),
class = "clus_lme")
})
test_that("clus_mle works with transformed response", {
data(data_3class_bcx)
expect_s3_class(
object = clus_lme(fixed_formula = log(Y) ~ X, name_class = "D",
name_clust = "id_Clus", data = data_3class_bcx),
class = "clus_lme")
})
test_that("clus_mle does not work without input fixed_formula", {
data(data_3class)
expect_error(
object = clus_lme(name_class = "D", name_clust = "id_Clus",
data = data_3class),
regexp = "agrument \"fixed_formula\" must be a formula of the form \"resp ~ pred\"")
})
test_that("clus_mle does not work if removing intercept term from fixed_formula", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1 - 1, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input fixed_formula as dot in predictors", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ ., name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input fixed_formula as dot in response", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = . ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input fixed_formula as dot", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = . ~ ., name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input wrong fixed_formula", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input wrong fixed_formula", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input wrong fixed_formula", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Z ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does not work if input missing name_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1,
name_clust = "id_Clus", data = data_3class),
regexp = "agrument \"name_class\" was either missing or wrong name!")
})
test_that("clus_mle does not work if input missing name_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "",
name_clust = "id_Clus", data = data_3class),
regexp = "agrument \"name_class\" was either missing or wrong name!")
})
test_that("clus_mle does not work if name_class is not character", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = D,
name_clust = "id_Clus", data = data_3class),
regexp = "agrument \"name_class\" was either missing or wrong name!")
})
test_that("clus_mle does not work if input wrong name_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "X2",
name_clust = "id_Clus", data = data_3class),
regexp = "agrument \"name_class\" must have 3 levels or classes!")
})
test_that("clus_mle does not work if input missing name_clust", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D", name_clust = "",
data = data_3class),
regexp = "agrument \"name_clust\" was either missing or wrong name!")
})
test_that("clus_mle does not work if input missing name_clust", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
data = data_3class),
regexp = "agrument \"name_clust\" was either missing or wrong name!")
})
test_that("clus_mle does not work if input missing name_clust", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "D", data = data_3class),
regexp = "agrument \"name_clust\" cannot be the name of neither test, covariates nor classes!")
})
test_that("clus_mle does not work if input wrong levl_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class,
levl_class = 3))
})
test_that("clus_mle does not work if input wrong levl_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class,
levl_class = c("1", "2", NA)))
})
test_that("clus_mle does not work if input wrong levl_class", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class,
levl_class = c(1, 2, NA)))
})
test_that("clus_mle does not works for boxcox transformation in case of negative values", {
data(data_3class)
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class,
boxcox = TRUE),
regexp = "Cannot apply Box-Cox transform for negative values.")
})
test_that("clus_mle does not works without action for missing data", {
data(data_3class)
data_3class$X1[sample(1:30, 6, replace = FALSE)] <- NA
expect_error(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class))
})
test_that("clus_mle does works with na.omit() for missing data", {
data(data_3class)
data_3class$X1[sample(1:30, 6, replace = FALSE)] <- NA
expect_s3_class(
object = clus_lme(fixed_formula = Y ~ X1, name_class = "D",
name_clust = "id_Clus", data = data_3class,
na_action = na.omit),
class = "clus_lme")
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.