Nothing
test_that("test plot", {
skip_on_cran()
person <- dplyr::tibble(
person_id = 1:3L,
gender_concept_id = as.integer(c(8507, 8532, 8532)),
year_of_birth = as.integer(c(1985, 2000, 1962)),
month_of_birth = as.integer(c(10, 5, 9)),
day_of_birth = as.integer(c(30, 10, 24)),
race_concept_id = 0L,
ethnicity_concept_id = 0L
)
dus_cohort <- dplyr::tibble(
cohort_definition_id = as.integer(c(1, 1, 1, 2)),
subject_id = as.integer(c(1, 1, 2, 3)),
cohort_start_date = as.Date(c(
"1990-04-19", "1991-04-19", "2010-11-14", "2000-05-25"
)),
cohort_end_date = as.Date(c(
"1990-04-19", "1991-04-19", "2010-11-14", "2000-05-25"
))
)
comorbidities <- dplyr::tibble(
cohort_definition_id = as.integer(c(1, 2, 2, 1)),
subject_id = as.integer(c(1, 1, 3, 3)),
cohort_start_date = as.Date(c(
"1990-01-01", "1990-06-01", "2000-01-01", "2000-06-01"
)),
cohort_end_date = as.Date(c(
"1990-01-01", "1990-06-01", "2000-01-01", "2000-06-01"
))
)
medication <- dplyr::tibble(
cohort_definition_id = as.integer(c(1, 1, 2, 1)),
subject_id = as.integer(c(1, 1, 2, 3)),
cohort_start_date = as.Date(c(
"1990-02-01", "1990-08-01", "2009-01-01", "1995-06-01"
)),
cohort_end_date = as.Date(c(
"1990-02-01", "1990-08-01", "2009-01-01", "1995-06-01"
))
)
observation_period <- dplyr::tibble(
observation_period_id = 1:3L,
person_id = 1:3L,
observation_period_start_date = as.Date(c(
"1985-01-01", "1989-04-29", "1974-12-03"
)),
observation_period_end_date = as.Date(c(
"2011-03-04", "2022-03-14", "2023-07-10"
)),
period_type_concept_id = 0L
)
cdm <- mockCohortCharacteristics(
con = connection(), writeSchema = writeSchema(),
dus_cohort = dus_cohort, person = person,
comorbidities = comorbidities, medication = medication,
observation_period = observation_period
)
cdm$dus_cohort <- omopgenerics::newCohortTable(
table = cdm$dus_cohort, cohortSetRef = dplyr::tibble(
cohort_definition_id = c(1L, 2L), cohort_name = c("exposed", "unexposed")
)
)
cdm$comorbidities <- omopgenerics::newCohortTable(
table = cdm$comorbidities, cohortSetRef = dplyr::tibble(
cohort_definition_id = c(1L, 2L), cohort_name = c("covid", "headache")
)
)
cdm$medication <- omopgenerics::newCohortTable(
table = cdm$medication,
cohortSetRef = dplyr::tibble(
cohort_definition_id = c(1L, 2L, 3L),
cohort_name = c("acetaminophen", "ibuprophen", "naloxone")
),
cohortAttritionRef = NULL
)
test_data <- summariseCharacteristics(
cdm$dus_cohort,
cohortIntersectFlag = list(
"Medications" = list(
targetCohortTable = "medication", window = c(-365, 0)
),
"Comorbidities" = list(
targetCohortTable = "comorbidities", window = c(-Inf, 0)
)
)
)
# barplot
plot <- plotCharacteristics(
result = test_data |>
dplyr::filter(
variable_name == "Medications",
estimate_type == "percentage"
),
plotStyle = "barplot",
facet = c("cohort_name"),
colour = c("variable_name", "variable_level")
)
expect_true(ggplot2::is.ggplot(plot))
# boxplot
plot2 <- plotCharacteristics(
result = test_data |>
dplyr::filter(variable_name == "Age"),
plotStyle = "boxplot",
facet = "variable_name",
colour = c("cohort_name")
)
expect_true(ggplot2::is.ggplot(plot2))
expect_no_error(plotCharacteristics(
result = test_data |>
dplyr::filter(variable_name == "Age"),
plotStyle = "boxplot"
))
expect_no_error(plotCharacteristics(
result = test_data |>
dplyr::filter(variable_name == "Age"),
plotStyle = "barplot"
))
expect_no_error(plotCharacteristics(
result = test_data |>
dplyr::filter(variable_name == "Age"),
plotStyle = "barplot"
))
})
test_that("plotCharacteristics", {
skip_on_cran()
person <- dplyr::tibble(
person_id = c(1, 2, 3) |> as.integer(),
gender_concept_id = c(8507, 8532, 8532) |> as.integer(),
year_of_birth = c(1985, 2000, 1962) |> as.integer(),
month_of_birth = c(10, 5, 9) |> as.integer(),
day_of_birth = c(30, 10, 24) |> as.integer(),
race_concept_id = 0L,
ethnicity_concept_id = 0L
)
dus_cohort <- dplyr::tibble(
cohort_definition_id = c(1, 1, 1, 2) |> as.integer(),
subject_id = c(1, 1, 2, 3) |> as.integer(),
cohort_start_date = as.Date(c(
"1990-04-19", "1991-04-19", "2010-11-14", "2000-05-25"
)),
cohort_end_date = as.Date(c(
"1990-04-19", "1991-04-19", "2010-11-14", "2000-05-25"
))
)
observation_period <- dplyr::tibble(
observation_period_id = c(1, 2, 3) |> as.integer(),
person_id = c(1, 2, 3) |> as.integer(),
observation_period_start_date = as.Date(c(
"1975-01-01", "1959-04-29", "1944-12-03"
)),
observation_period_end_date = as.Date(c(
"2021-03-04", "2022-03-14", "2023-07-10"
)),
period_type_concept_id = 0L
)
cdm <- mockCohortCharacteristics(
con = connection(), writeSchema = writeSchema(),
dus_cohort = dus_cohort, person = person,
observation_period = observation_period
)
result1 <- summariseCharacteristics(
cdm$dus_cohort,
demographics = TRUE,
ageGroup = list(c(0, 40), c(41, 150))
)
gg1 <- plotCharacteristics(result1 |>
dplyr::filter(variable_name ==
"Prior observation"))
expect_true(ggplot2::is.ggplot(gg1))
gg2 <- plotCharacteristics(
result1 |>
dplyr::filter(variable_name ==
"Age"),
plotStyle = "boxplot",
colour = "variable_name"
)
expect_true(ggplot2::is.ggplot(gg2))
mockDisconnect(cdm)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.