Nothing
test_that("plotCohortTiming, boxplot", {
skip_on_cran()
person <- dplyr::tibble(
person_id = 1:20L,
gender_concept_id = 8532L,
year_of_birth = sample(1950:2000L, size = 20, replace = TRUE),
month_of_birth = sample(1:12L, size = 20, replace = TRUE),
day_of_birth = sample(1:28L, size = 20, replace = TRUE),
race_concept_id = 0L,
ethnicity_concept_id = 0L
)
table <- dplyr::tibble(
cohort_definition_id = c(rep(1, 15), rep(2, 10), rep(3, 15), rep(4, 5)) |> as.integer(),
subject_id = c(
20, 5, 10, 12, 4, 15, 2, 1, 5, 10, 5, 8, 13, 4, 10,
6, 18, 5, 1, 20, 14, 13, 8, 17, 3,
16, 15, 20, 17, 3, 14, 6, 11, 8, 7, 20, 19, 5, 2, 18,
5, 12, 3, 14, 13
) |> as.integer(),
cohort_start_date = as.Date(c(
rep("2000-01-01", 5), rep("2010-09-05", 5), rep("2006-05-01", 5),
rep("2003-03-31", 5), rep("2008-07-02", 5), rep("2000-01-01", 5),
rep("2012-09-05", 5), rep("1996-05-01", 5), rep("1989-03-31", 5)
)),
cohort_end_date = as.Date(c(
rep("2000-01-01", 5), rep("2010-09-05", 5), rep("2006-05-01", 5),
rep("2003-03-31", 5), rep("2008-07-02", 5), rep("2000-01-01", 5),
rep("2012-09-05", 5), rep("1996-05-01", 5), rep("1989-03-31", 5)
))
)
obs <- dplyr::tibble(
observation_period_id = 1:20L,
person_id = 1:20L,
observation_period_start_date = as.Date("1930-01-01"),
observation_period_end_date = as.Date("2025-01-01"),
period_type_concept_id = 0L
)
cdm <- mockCohortCharacteristics(
con = connection(), writeSchema = writeSchema(),
person = person, observation_period = obs, table = table
)
timing1 <- summariseCohortTiming(cdm$table,
restrictToFirstEntry = TRUE
)
boxplot1 <- plotCohortTiming(timing1,
facet = "cdm_name",
colour = c("cohort_name_reference", "cohort_name_comparator"),
uniqueCombinations = TRUE
)
# expect_true(all(c("q0", "q25", "q50", "q75", "q100") %in% colnames(boxplot1$data)))
# expect_true(all(c("Cohort 1", "Cohort 2") %in% boxplot1$data$cohort_name_reference))
# expect_true(all(c("Cohort 2", "Cohort 3", "Cohort 4") %in% boxplot1$data$cohort_name_comparator))
# expect_false("Cohort 1" %in% boxplot1$data$cohort_name_comparator)
expect_true(all(c("gg", "ggplot") %in% class(boxplot1)))
# expect_true(boxplot1$labels$fill == "group")
boxplot2 <- plotCohortTiming(timing1,
colour = c("cohort_name_comparator"),
uniqueCombinations = FALSE
)
# expect_true(all(c("Cohort 1", "Cohort 2") %in% boxplot2$data$cohort_name_reference))
# expect_true(all(c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4") %in% boxplot2$data$cohort_name_comparator))
expect_true(all(c("gg", "ggplot") %in% class(boxplot2)))
# strata
cdm$table <- cdm$table |>
PatientProfiles::addAge(ageGroup = list(c(0, 40), c(41, 150))) |>
PatientProfiles::addSex() |>
dplyr::compute(name = "table", temporary = FALSE) |>
omopgenerics::newCohortTable()
timing3 <- summariseCohortTiming(cdm$table,
strata = list("age_group", c("age_group", "sex")),
restrictToFirstEntry = FALSE
)
boxplot3 <- plotCohortTiming(timing3,
colour = c("age_group", "sex"),
facet = c("age_group", "sex"),
uniqueCombinations = FALSE
)
# expect_true(all(c("Cohort 1", "Cohort 2") %in% boxplot3$data$cohort_name_reference))
# expect_true(all(c("Cohort 1", "Cohort 2", "Cohort 3", "Cohort 4") %in% boxplot3$data$cohort_name_comparator))
expect_true(all(c("gg", "ggplot") %in% class(boxplot3)))
# expect_true(boxplot3$labels$fill == "group")
# expect_true(all(c("overall", "0 to 40", "0 to 40 &&& Female", "41 to 150", "41 to 150 &&& Female") %in% unique(boxplot3$data$color_combined)))
mockDisconnect(cdm)
})
test_that("plotCohortTiming, density", {
skip_on_cran()
person <- dplyr::tibble(
person_id = 1:20L,
year_of_birth = sample(1950:2000L, size = 20, replace = TRUE),
month_of_birth = sample(1:12, size = 20, replace = TRUE),
day_of_birth = sample(1:28, size = 20, replace = TRUE),
race_concept_id = 0L,
ethnicity_concept_id = 0L
) |>
dplyr::mutate(gender_concept_id = sample(c(8532, 8507), size = dplyr::n(), replace = TRUE))
table <- dplyr::tibble(
cohort_definition_id = c(rep(1, 15), rep(2, 10), rep(3, 15), rep(4, 5)) |> as.integer(),
subject_id = c(
20, 5, 10, 12, 4, 15, 2, 1, 5, 10, 5, 8, 13, 4, 10,
6, 18, 5, 1, 20, 14, 13, 8, 17, 3,
16, 15, 20, 17, 3, 14, 6, 11, 8, 7, 20, 19, 5, 2, 18,
5, 12, 3, 14, 13
) |> as.integer(),
cohort_start_date = as.Date(c(
rep("2000-01-01", 5), rep("2010-09-05", 5), rep("2006-05-01", 5),
rep("2003-03-31", 5), rep("2008-07-02", 5), rep("2000-01-01", 5),
rep("2012-09-05", 5), rep("1996-05-01", 5), rep("1989-03-31", 5)
)),
cohort_end_date = as.Date(c(
rep("2000-01-01", 5), rep("2010-09-05", 5), rep("2006-05-01", 5),
rep("2003-03-31", 5), rep("2008-07-02", 5), rep("2000-01-01", 5),
rep("2012-09-05", 5), rep("1996-05-01", 5), rep("1989-03-31", 5)
))
)
obs <- dplyr::tibble(
observation_period_id = 1:20 |> as.integer(),
person_id = 1:20 |> as.integer(),
observation_period_start_date = as.Date("1930-01-01"),
observation_period_end_date = as.Date("2025-01-01"),
period_type_concept_id = 0L
)
cdm <- mockCohortCharacteristics(
con = connection(), writeSchema = writeSchema(),
person = person, observation_period = obs, table = table
)
timing1 <- summariseCohortTiming(cdm$table, restrictToFirstEntry = FALSE)
density1 <- plotCohortTiming(timing1,
plotType = "density",
facet = NULL,
colour = c("cohort_name_reference", "cohort_name_comparator"),
uniqueCombinations = TRUE
)
# expect_true(all(c("plot_id", "timing_label", "color_var", "x", "y", ".group") %in% colnames(density1$data)))
expect_true(all(c("gg", "ggplot") %in% class(density1)))
# expect_true(density1$labels$fill == "color_var")
density2 <- plotCohortTiming(timing1,
plotType = "density",
colour = c("cohort_name_comparator"),
facet = c("cdm_name", "cohort_name_reference"),
uniqueCombinations = FALSE
)
# expect_true(all(c("plot_id", "timing_label", "x", "y", ".group") %in% colnames(density2$data)))
expect_true(all(c("gg", "ggplot") %in% class(density2)))
# expect_null(density2$labels$fill)
timing2 <- summariseCohortTiming(cdm$table, estimates = "density")
density4 <- plotCohortTiming(timing2,
plotType = "density",
facet = NULL,
colour = c("cohort_name_reference", "cohort_name_comparator"),
uniqueCombinations = TRUE
)
expect_true(all(c("gg", "ggplot") %in% class(density4)))
# expect_true(all(is.na(density4$data$q50)))
# strata
cdm$table <- cdm$table |>
PatientProfiles::addAge(ageGroup = list(c(0, 40), c(41, 150))) |>
PatientProfiles::addSex() |>
dplyr::compute(name = "table", temporary = FALSE) |>
omopgenerics::newCohortTable()
timing3 <- summariseCohortTiming(cdm$table,
strata = list("age_group", c("age_group", "sex")),
restrictToFirstEntry = FALSE
)
density3 <- plotCohortTiming(timing3,
plotType = "density",
colour = c("age_group", "sex"),
facet = c("cohort_name_reference", "cohort_name_comparator"),
uniqueCombinations = FALSE
)
# expect_true(all(c("plot_id", "timing_label", "color_var", "x", "y", ".group") %in% colnames(density3$data)))
expect_true(all(c("gg", "ggplot") %in% class(density3)))
# expect_true(all(unique(density3$data$color_combined) %in% c("Overall", "0 to 40", "0 to 40 and female",
# "41 to 150", "41 to 150 and female", "41 to 150 and male",
# "0 to 40 and male")))
# not sure why 41 to 150 does not have density
mockDisconnect(cdm)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.