Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>"
)
## ----setup--------------------------------------------------------------------
library(Colossus)
library(data.table)
library(survival)
## ----eval=TRUE----------------------------------------------------------------
data(cancer, package = "survival")
df <- cancer
df$UserID <- seq_len(nrow(df))
df$status <- df$status - 1
df$sex <- df$sex - 1
t0 <- "%trunc%"
t1 <- "time"
event <- "status"
names <- c("age", "sex")
tform <- c("loglin", "loglin")
control <- list("Ncores" = 1, "maxiter" = 2, "verbose" = 2)
a_n <- c(0.01701289, -0.51256478)
term_n <- c(0, 0)
keep_constant <- c(0, 0)
modelform <- "M"
## ----eval=TRUE, fig.width=7,fig.height=4--------------------------------------
plot_options <- list(
"type" = c("surv", paste(tempfile(), "run", sep = "")), "studyid" = "UserID",
"verbose" = 2, "surv_curv" = T, "martingale" = F, "strat_haz" = F, "km" = F
)
e <- RunCoxPlots(
df, t0, t1, event, names, term_n, tform, keep_constant, a_n, modelform,
control = control, plot_options = plot_options
)
norm_surv <- e[["standard"]]
g <- ggplot2::ggplot(norm_surv, ggplot2::aes(x = .data$t, y = .data$h)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(x = "age", y = "Instantaneous Hazard")
g
g <- ggplot2::ggplot(norm_surv, ggplot2::aes(x = .data$t, y = .data$ch)) +
ggplot2::geom_line(color = "black", alpha = 1) +
ggplot2::labs(x = "age", y = "Cumulative Hazard")
g
g <- ggplot2::ggplot(norm_surv, ggplot2::aes(x = .data$t, y = .data$surv)) +
ggplot2::geom_line(color = "black", alpha = 1) +
ggplot2::labs(x = "age", y = "Surviving Fraction")
g
plot_options <- list(
"type" = c("surv", paste(tempfile(), "run", sep = "")), "studyid" = "UserID",
"verbose" = 2, "surv_curv" = F, "martingale" = F, "strat_haz" = F, "km" = T
)
e <- RunCoxPlots(
df, t0, t1, event, names, term_n, tform, keep_constant, a_n, modelform,
control = control, plot_options = plot_options
)
km <- e[["kaplin-meier"]]
g <- ggplot2::ggplot(km, ggplot2::aes(x = .data$t_t, y = .data$n_t)) +
ggplot2::geom_line(color = "black", alpha = 1) +
ggplot2::labs(x = "age", y = "KM Survival")
g
## ----eval=TRUE, fig.width=7,fig.height=4--------------------------------------
plot_options <- list(
"type" = c("schoenfeld", paste(tempfile(), "run", sep = "")),
"studyid" = "UserID", "verbose" = 2
)
res_all <- RunCoxPlots(
df, t0, t1, event, names, term_n, tform, keep_constant, a_n,
modelform,
control = control, plot_options = plot_options
)
res_age <- res_all[["age"]]
g <- ggplot2::ggplot(res_age, ggplot2::aes(x = .data$time, y = .data$y)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(
x = paste("Survival Time", sep = ""),
y = paste("Schoenfeld Residual (age)", sep = " ")
)
g
g <- ggplot2::ggplot(res_age, ggplot2::aes(x = .data$time, y = .data$y_scale)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(
x = paste("Survival Time", sep = ""),
y = paste("Schoenfeld Residual Scaled (age)", sep = " ")
)
g
res_sex <- res_all[["sex"]]
g <- ggplot2::ggplot(res_sex, ggplot2::aes(x = .data$time, y = .data$y)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(
x = paste("Survival Time", sep = ""),
y = paste("Schoenfeld Residual (sex)", sep = " ")
)
g
g <- ggplot2::ggplot(res_sex, ggplot2::aes(x = .data$time, y = .data$y_scale)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(
x = paste("Survival Time", sep = ""),
y = paste("Schoenfeld Residual Scaled (sex)", sep = " ")
)
g
## ----eval=TRUE, fig.width=7,fig.height=4--------------------------------------
plot_options <- list(
"type" = c("surv", paste(tempfile(), "run", sep = "")),
"studyid" = "UserID", "verbose" = 2, "surv_curv" = F,
"martingale" = T, "strat_haz" = F, "km" = F, "cov_cols" = c("age", "sex")
)
res_all <- RunCoxPlots(
df, t0, t1, event, names, term_n, tform, keep_constant, a_n,
modelform,
control = control, plot_options = plot_options
)
res_age <- res_all[["age"]]
g <- ggplot2::ggplot() +
ggplot2::geom_point(
data = res_age,
ggplot2::aes(x = .data$cov_max, y = .data$res_sum, group = .data$event, color = .data$event)
)
g <- g + ggplot2::labs(x = "Max Age", y = "Martingale Residuals")
g
res_sex <- res_all[["sex"]]
g <- ggplot2::ggplot() +
ggplot2::geom_point(
data = res_sex,
ggplot2::aes(x = .data$cov_max, y = .data$res_sum, group = .data$event, color = .data$event)
)
g <- g + ggplot2::labs(x = "Sex", y = "Martingale Residuals")
g
res_surv <- res_all[["survival_time"]]
g <- ggplot2::ggplot() +
ggplot2::geom_point(
data = res_surv,
ggplot2::aes(x = .data$time_max, y = .data$res_sum, group = .data$event, color = .data$event)
)
g <- g + ggplot2::labs(x = "Survival Time", y = "Martingale Residuals")
g
## ----eval=TRUE, fig.width=7,fig.height=4--------------------------------------
plot_options <- list(
"type" = c("risk", paste(tempfile(), "run", sep = "")), "studyid" = "UserID",
"verbose" = 2
)
res_all <- RunCoxPlots(
df, t0, t1, event, names, term_n, tform, keep_constant, a_n,
modelform,
control = control, plot_options = plot_options
)
res_age <- res_all[["age"]]
g <- ggplot2::ggplot(res_age, ggplot2::aes(x = .data$x, y = .data$y)) +
ggplot2::geom_line(color = "black") +
ggplot2::labs(x = "Age", y = "Relative Risk")
g
res_sex <- res_all[["sex"]]
g <- ggplot2::ggplot(res_sex, ggplot2::aes(x = .data$x, y = .data$y)) +
ggplot2::geom_point(color = "black") +
ggplot2::labs(x = "Sex", y = "Relative Risk")
g
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.