Nothing
test_that("Coxph strata_gradient_CR", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
df$censor <- (df$lung == 0)
event <- "censor"
names <- c("dose", "fac")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
control <- list("ncores" = 2, "lr" = 0.001, "maxiter" = 20, "halfmax" = 5, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
plot_options <- list("name" = paste(tempfile(), "run", sep = ""), "verbose" = FALSE, "studyid" = "studyid", "age_unit" = "years")
dft <- GetCensWeight(df, time1, time2, event, names, term_n, tform, keep_constant, a_n, modelform, control, plot_options)
#
#
t_ref <- dft$t
surv_ref <- dft$surv
t_c <- df$t1
cens_weight <- approx(t_ref, surv_ref, t_c, rule = 2)$y
df$weighting <- cens_weight
#
event <- "lung"
a_n <- c(-0.1, -0.1)
keep_constant <- c(0, 0)
control <- list("ncores" = 2, "lr" = 0.001, "maxiters" = c(1, 1), "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
verbose <- FALSE
j_iterate <- 1
for (i in c(TRUE, FALSE)) {
for (k in c(TRUE)) {
for (l in c(TRUE, FALSE)) {
model_control <- list("strata" = i, "gradient" = k, "cr" = l)
a_n <- c(-0.1, -0.1)
control <- list("ncores" = 2, "lr" = 0.75, "maxiters" = c(1, 1), "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
modelform <- "M"
e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, control = control, strat_col = "rand", model_control = model_control, cens_weight = "weighting")
expect_equal(e$Status, "PASSED")
modelform <- "A"
e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, control = control, strat_col = "rand", model_control = model_control, cens_weight = "weighting")
expect_equal(e$Status, "PASSED")
}
}
}
})
test_that("Coxph gradient methods", {
fname <- "ll_comp_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
time1 <- "t0"
time2 <- "t1"
df$censor <- (df$lung == 0)
event <- "censor"
names <- c("dose", "fac")
term_n <- c(0, 0)
tform <- c("loglin", "loglin")
keep_constant <- c(1, 0)
a_n <- c(0, 0)
modelform <- "M"
control <- list("ncores" = 2, "lr" = 0.001, "maxiter" = 20, "halfmax" = 5, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
#
event <- "lung"
keep_constant <- c(0, 0)
model_control <- list("gradient" = TRUE)
a_n <- c(-0.1, -0.1)
control <- list("ncores" = 2, "lr" = 0.75, "maxiters" = c(1, 1), "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
modelform <- "M"
expect_no_error(RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, control = control, strat_col = "rand", model_control = model_control))
for (method in c("momentum", "adadelta", "adam")) {
model_control <- list("gradient" = TRUE)
model_control[[method]] <- TRUE
a_n <- c(-0.1, -0.1)
control <- list("ncores" = 2, "lr" = 0.75, "maxiters" = c(1, 1), "halfmax" = 2, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 1)
modelform <- "M"
e <- RunCoxRegression_Omnibus(df, time1, time2, event, names, term_n = term_n, tform = tform, keep_constant = keep_constant, a_n = a_n, modelform = modelform, control = control, strat_col = "rand", model_control = model_control)
expect_equal(e$Status, "PASSED")
}
})
test_that("Pois strata_gradient", {
fname <- "ll_0.csv"
colTypes <- c("double", "double", "double", "integer", "integer")
df <- fread(fname, nThread = min(c(detectCores(), 2)), data.table = TRUE, header = TRUE, colClasses = colTypes, verbose = FALSE, fill = TRUE)
time1 <- "t0"
df$pyr <- df$t1 - df$t0
pyr <- "pyr"
event <- "lung"
set.seed(3742)
df$rand <- floor(runif(nrow(df), min = 0, max = 5))
names <- c("dose", "rand", "rand")
term_n <- c(2, 1, 0)
tform <- c("loglin", "lin", "plin")
keep_constant <- c(0, 0, 0)
a_n <- c(0.01, 0.1, 0.1)
modelform <- "PAE"
control <- list("ncores" = 2, "lr" = 0.001, "maxiters" = c(1, 1), "halfmax" = 5, "epsilon" = 1e-6, "deriv_epsilon" = 1e-6, "abs_max" = 1.0, "change_all" = TRUE, "dose_abs_max" = 100.0, "verbose" = 0, "ties" = "breslow", "double_step" = 0)
strat_col <- "fac"
verbose <- FALSE
j_iterate <- 1
for (i in c(TRUE, FALSE)) {
for (j in c(TRUE)) {
model_control <- list("strata" = i, "gradient" = j)
if (verbose) {
print(model_control)
}
a_n <- c(0.01, 0.1, 0.1)
modelform <- "PAE"
e <- RunPoissonRegression_Omnibus(df, pyr, event, names, term_n, tform, keep_constant, a_n, modelform, control, strat_col, model_control)
expect_equal(e$Status, "PASSED")
}
}
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.