The alpha-kernel regression with compositional response data | R Documentation |
\alpha
-kernel regression with compositional response data
The \alpha
-kernel regression with compositional response data.
akern.reg( xnew, y, x, a = seq(0.1, 1, by = 0.1),
h = seq(0.1, 1, length = 10), type = "gauss" )
xnew |
A matrix with the new predictor variables whose compositions are to be predicted. |
y |
A matrix with the compositional response data. Zeros are allowed. |
x |
A matrix with the available predictor variables. |
a |
The value(s) of |
h |
The bandwidth value(s) to consider. |
type |
The type of kernel to use, "gauss" or "laplace". |
The \alpha
-kernel regression for compositional response variables is
applied.
A list with the estimated compositional response data for each value of
\alpha
and h.
Michail Tsagris.
R implementation and documentation: Michail Tsagris mtsagris@uoc.gr.
Tsagris M., Alenazi A. and Stewart C. (2023). Flexible non-parametric regression models for compositional response data with zeros. Statistics and Computing, 33(106).
https://link.springer.com/article/10.1007/s11222-023-10277-5
akernreg.tune, aknn.reg, aknnreg.tune,
alfa.reg, comp.ppr, comp.reg, kl.compreg
y <- as.matrix( iris[, 1:3] )
y <- y / rowSums(y)
x <- iris[, 4]
mod <- akern.reg( x, y, x, a = c(0.4, 0.5), h = c(0.1, 0.2) )
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.