Nothing
test_that("RVConsensusOPLS", {
## rvcopls output is compared to Matlab output
rvcopls <- RVConsensusOPLS(
data=demo_3_Omics[c("MetaboData", "MicroData", "ProteoData")],
Y=demo_3_Omics$Y,
maxOcomp=10,
nfold=14)
## test functionality
rvcopls.fac <- RVConsensusOPLS(
data=demo_3_Omics[c("MetaboData", "MicroData", "ProteoData")],
Y=factor(c(rep('M',7), rep('F',7))),
nfold=3)
rvcopls.reg <- RVConsensusOPLS(
data=demo_3_Omics[c("MetaboData", "MicroData", "ProteoData")],
Y=c(rnorm(7, mean=1, sd=0.01), rnorm(7, mean=0, sd=0.01)),
modelType="reg",
nfold=3)
## RV
expect_equal(rvcopls$RV,
c(MetaboData=0.770310488895171,
MicroData=0.835375809822633,
ProteoData=0.74971449858494),
tolerance=1e-6)
## lambda
expect_equal(rvcopls$koplsModel$lambda[,1],
c(MetaboData=0.0455910270422634,
MicroData=0.00474677906005336,
ProteoData=0.00357785429350788),
tolerance=1e-6)
expect_equal(rvcopls$koplsModel$lambda[,2],
c(MetaboData=0.236514988519443,
MicroData=0.0231772225562188,
ProteoData=0.153126721989076),
tolerance=1e-6)
## blockContribution
expect_equal(rvcopls$koplsModel$blockContribution[,1],
c(MetaboData=0.84559897268353,
MicroData=0.0880408220024505,
ProteoData=0.0663602053140197),
tolerance=1e-6)
expect_equal(rvcopls$koplsModel$blockContribution[,2],
c(MetaboData=0.572926698791582,
MicroData=0.0561437974371785,
ProteoData=0.37092950377124),
tolerance=1e-6)
## normKernels
expect_equal(rvcopls$normKernels[[1]][1,2],
c(0.0328819715926973),
tolerance=1e-6)
expect_equal(rvcopls$normKernels[[2]][7,7],
c(0.104945253831102),
tolerance=1e-6)
expect_equal(rvcopls$normKernels[[3]][9,11],
c(0.121529241109287),
tolerance=1e-6)
#### Optimal model
## Kpreproc
expect_equal(rvcopls$koplsModel$K[1,1][[1]][9,11],
c(0.006208603),
tolerance=1e-6)
expect_equal(rvcopls$koplsModel$K[1,1][[1]][3,13],
c(-0.01054343),
tolerance=1e-6)
## Cp
expect_equal(unname(rvcopls$koplsModel$Cp[,1]),
c(-0.707106781186547,
0.707106781186548), tolerance = 1e-6)
## Sp
expect_equal(1/rvcopls$koplsModel$Sp[1,1]^2,
c(0.9574551557441),
tolerance=1e-6)
## Up
expect_equal(unique(rvcopls$koplsModel$Up[,1]),
c(-0.707106781186547,
0.707106781186547),
tolerance=1e-6)
## params
expect_equal(rvcopls$koplsModel$params$nOcomp,
c(1))
## Tp
expect_equal(rvcopls$koplsModel$Tp[[1]][1:3],
c(0.0942610932887749,
-0.154506780676698,
-0.0608792282254192),
tolerance=1e-6)
expect_equal(rvcopls$koplsModel$Tp[[2]][4:6],
c(-0.00916472674616893,
-0.208638510110777,
-0.115250463686483),
tolerance=1e-6)
## scores
expect_equal(unname(rvcopls$scores[6:8,'p_1']),
c(-0.115250463686483,
-0.134547425243546,
0.169584736593916),
tolerance=1e-6)
expect_equal(unname(rvcopls$scores[6:8,'o_1']),
c(0.225639604453228,
-0.750090705302492,
-0.246527124390688),
tolerance=1e-6)
## loadings
expect_equal(rvcopls$loadings$MetaboData[1:3,'p_1'],
c(MT15708=-3.7904893970217,
MT15709=0.477951498442441,
MT15710=0.597346765073993),
tolerance=1e-6)
expect_equal(rvcopls$loadings$MetaboData[1:3,'o_1'],
c(MT15708=-0.0906993946312754,
MT15709=0.391637521782826,
MT15710=-0.102030862736768),
tolerance=1e-6)
expect_equal(rvcopls$loadings$MicroData[1:3,'p_1'],
c(GC26855=-121.851575745773,
GC26856=132.585031777677,
GC26857=75.1435270079714),
tolerance=1e-6)
expect_equal(rvcopls$loadings$MicroData[1:3,'o_1'],
c(GC26855=-28.2239137515635,
GC26856=-31.9262881875121,
GC26857=1.89187255025149),
tolerance=1e-6)
expect_equal(rvcopls$loadings$ProteoData[1:3,'p_1'],
c(MT1126=-8838.55937473373,
MT1127=1072.45583338495,
MT1128=-232.657268097895),
tolerance=1e-6)
expect_equal(rvcopls$loadings$ProteoData[1:3,'o_1'],
c(MT1126=162.821016719371,
MT1127=-41.4788108974671,
MT1128=-18.1358103752954),
tolerance=1e-6)
#### CV
## AllYhat
expect_equal(unname(rvcopls$cv$AllYhat[1:3,1]),
c(0.1381898,
0.6109852,
0.5683056),
tolerance=1e-6)
expect_equal(unname(rvcopls$cv$AllYhat[4:6,2]),
c(0.60339737,
0.23570761,
0.48595049),
tolerance=1e-6)
expect_equal(unname(rvcopls$cv$AllYhat[1:3,3]),
c(0.136238770,
0.524588637,
0.740291299),
tolerance=1e-6)
expect_equal(unname(rvcopls$cv$AllYhat[7:9,4]),
c(-0.2020121,
0.9947210,
0.4679297),
tolerance=1e-6)
## Q2Yhat
expect_equal(unname(rvcopls$cv$Q2Yhat[1:5]),
c(0.24144459290868,
0.254116314089248,
0.0688378757417817,
-0.058455510451356,
0.159444129092519),
tolerance=1e-6)
## DQ2Yhat
expect_equal(unname(rvcopls$cv$DQ2Yhat[1:5]),
c(0.120292310258979,
0.151671627027632,
-0.0418685758525927,
-0.171662986447783,
0.0788120118584003),
tolerance=1e-6)
# ## Tcv
# expect_equal(rvcopls$cv$Tcv[6:8,1],
# c(-3.05298886630587,
# -10.7977788716645,
# 2.7915511228586),
# tolerance=1e-6)
#
# ## Yhat (at maxOcomp)
# expect_equal(rvcopls$cv$Yhat[6:8,1],
# c(0.80176823634328,
# 1.56729072041118,
# 0.224073196497945),
# tolerance=1e-6)
# expect_equal(rvcopls$cv$Yhat[6:8,2],
# c(0.19823176365672,
# -0.567290720411185,
# 0.775926803502055),
# tolerance=1e-6)
#
# expect_equal(rvcopls$koplsModel$R2X,
# c(0.18253923588794,
# 0.257726827483885),
# tolerance=1e-6)
# expect_equal(rvcopls$koplsModel$R2XO,
# c(0,0.0811103596697501),
# tolerance=1e-6)
# expect_equal(rvcopls$koplsModel$R2XC,
# c(0.18253923588794,
# 0.176616467814135),
# tolerance=1e-6)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.