View source: R/Coxmos_mb_coxmos.R
cv.mb.coxmos | R Documentation |
This function provides a unified interface for all multiblock HD-COX cross-validation methods in the package.
cv.mb.coxmos(
method = c("sb.splsicox", "sb.splsdrcox", "sb.splsdrcox_penalty", "sb.splsdacox",
"isb.splsicox", "isb.splsdrcox", "isb.splsdrcox_penalty", "isb.splsdacox",
"mb.splsdrcox", "mb.splsdacox"),
X,
Y,
max.ncomp = 8,
penalty.list = seq(0.1, 0.9, 0.2),
vector = NULL,
MIN_NVAR = 1,
MAX_NVAR = NULL,
n.cut_points = 5,
n_run = 3,
k_folds = 10,
x.center = TRUE,
x.scale = FALSE,
remove_near_zero_variance = TRUE,
remove_zero_variance = TRUE,
toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE,
remove_non_significant = FALSE,
alpha = 0.05,
w_AIC = 0,
w_C.Index = 0,
w_AUC = 1,
w_I.BRIER = 0,
MIN_AUC_INCREASE = 0.01,
EVAL_METHOD = "AUC",
pred.method = "cenROC",
pred.attr = "mean",
MIN_AUC = 0.8,
MIN_COMP_TO_CHECK = 3,
max.iter = 200,
times = NULL,
max_time_points = 15,
design = NULL,
fast_mode = FALSE,
MIN_EPV = 5,
return_models = FALSE,
returnData = FALSE,
PARALLEL = FALSE,
verbose = FALSE,
seed = 123
)
method |
Cross-validation method to use: "sb.splsicox", "sb.splsdrcox", "sb.splsdrcox_penalty", "sb.splsdacox", "isb.splsicox", "isb.splsdrcox", "isb.splsdrcox_penalty", "isb.splsdacox", "mb.splsdrcox", or "mb.splsdacox". |
X |
List of numeric matrices or data.frames. Explanatory variables. Qualitative variables must be transform into binary variables. |
Y |
Numeric matrix or data.frame. Response variables. Object must have two columns named as "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and event observations. |
max.ncomp |
Numeric. Maximum number of PLS components to compute for the cross validation (default: 8). |
penalty.list |
Numeric vector. Penalty for variable selection for the individual cox models. Variables with a lower P-Value than 1 - "penalty" in the individual cox analysis will be keep for the sPLS-ICOX approach (default: seq(0.1,0.9,0.2)) (sb.splsicox, sb.splsdrcox_penalty, isb.splsicox, isb.splsdrcox_penalty). |
vector |
Numeric vector. Used for computing best number of variables. As many values as components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
MIN_NVAR |
Numeric. Minimum range size for computing cut points to select the best number of variables to use (default: 1) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
MAX_NVAR |
Numeric. Maximum range size for computing cut points to select the best number of variables to use (default: NULL) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
n.cut_points |
Numeric. Number of cut points for searching the optimal number of variables. If only two cut points are selected, minimum and maximum size are used (default: 5) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
n_run |
Numeric. Number of runs for cross validation (default: 3). |
k_folds |
Numeric. Number of folds for cross validation (default: 10). |
x.center |
Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE). |
x.scale |
Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE). |
remove_near_zero_variance |
Logical. If remove_near_zero_variance = TRUE, near zero variance variables will be removed (default: TRUE). |
remove_zero_variance |
Logical. If remove_zero_variance = TRUE, zero variance variables will be removed (default: TRUE). |
toKeep.zv |
Character vector. Name of variables in X to not be deleted by (near) zero variance filtering (default: NULL). |
remove_variance_at_fold_level |
Logical. If remove_variance_at_fold_level = TRUE, (near) zero variance will be removed at fold level (default: FALSE). |
remove_non_significant_models |
Logical. If remove_non_significant_models = TRUE, non-significant models are removed before computing the evaluation (default: FALSE). |
remove_non_significant |
Logical. If remove_non_significant = TRUE, non-significant variables/components in final cox model will be removed (default: FALSE). |
alpha |
Numeric. Numerical values are regarded as significant if they fall below the threshold (default: 0.05). |
w_AIC |
Numeric. Weight for AIC evaluator (default: 0). |
w_C.Index |
Numeric. Weight for C-Index evaluator (default: 0). |
w_AUC |
Numeric. Weight for AUC evaluator (default: 1). |
w_I.BRIER |
Numeric. Weight for BRIER SCORE evaluator (default: 0). |
MIN_AUC_INCREASE |
Numeric. Minimum improvement between different cross validation models to continue evaluating higher values (default: 0.01). |
EVAL_METHOD |
Character. The selected metric will be use to compute the best number of variables (default: "AUC") (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
pred.method |
Character. AUC evaluation algorithm method (default: "cenROC") (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
pred.attr |
Character. Way to evaluate the metric selected (default: "mean"). |
MIN_AUC |
Numeric. Minimum AUC desire to reach cross-validation models (default: 0.8). |
MIN_COMP_TO_CHECK |
Numeric. Number of penalties/components to evaluate to check if the AUC improves (default: 3). |
max.iter |
Numeric. Maximum number of iterations for PLS convergence (default: 200) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
times |
Numeric vector. Time points where the AUC will be evaluated (default: NULL) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
max_time_points |
Numeric. Maximum number of time points to use for evaluating the model (default: 15) (sb.splsdrcox, sb.splsdacox, isb.splsdrcox, isb.splsdacox, mb.splsdrcox, mb.splsdacox). |
design |
Numeric matrix. Matrix of size (number of blocks in X) x (number of blocks in X) with values between 0 and 1 (default: NULL) (mb.splsdrcox and mb.splsdacox). |
fast_mode |
Logical. If fast_mode = TRUE, for each run, only one fold is evaluated simultaneously (default: FALSE). |
MIN_EPV |
Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final cox model (default: 5). |
return_models |
Logical. Return all models computed in cross validation (default: FALSE). |
returnData |
Logical. Return original and normalized X and Y matrices (default: TRUE). |
PARALLEL |
Logical. Run the cross validation with multicore option (default: FALSE). |
verbose |
Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE). |
seed |
Number. Seed value for performing runs/folds divisions (default: 123). |
A cross-validation object of the specified multiblock type.
cv.sb.splsicox
for Single-Block SPLS-ICOX cross-validation,
cv.sb.splsdrcox_penalty
for Single-Block SPLS-DRCOX with penalty cross-validation,
cv.sb.splsdrcox
for Single-Block SPLS-DRCOX cross-validation,
cv.sb.splsdacox
for Single-Block SPLS-DACOX cross-validation,
cv.isb.splsicox
for Integrated Single-Block SPLS-ICOX cross-validation,
cv.isb.splsdrcox_penalty
for Integrated Single-Block SPLS-DRCOX with penalty cross-validation,
cv.isb.splsdrcox
for Integrated Single-Block SPLS-DRCOX cross-validation,
cv.isb.splsdacox
for Integrated Single-Block SPLS-DACOX cross-validation,
cv.mb.splsdrcox
for Multi-Block SPLS-DRCOX cross-validation,
cv.mb.splsdacox
for Multi-Block SPLS-DACOX cross-validation
data("X_multiomic")
data("Y_multiomic")
set.seed(123)
X_train <- X_multiomic
X_train$mirna <- X_train$mirna[1:30,1:30]
X_train$proteomic <- X_train$proteomic[1:30,1:30]
Y_train <- Y_multiomic[1:30,]
cv_mb <- cv.mb.coxmos(method = "sb.splsicox", X = X_train, Y = Y_train,
max.ncomp = 1, n_run = 1, k_folds = 3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.