eval_Coxmos_model_per_variable.list: eval_Coxmos_model_per_variable.list

eval_Coxmos_model_per_variable.listR Documentation

eval_Coxmos_model_per_variable.list

Description

The eval_Coxmos_model_per_variable.list Run the function "eval_Coxmos_model_per_variable" for a list of models. More information in "?eval_Coxmos_model_per_variable".

Usage

eval_Coxmos_model_per_variable.list(
  lst_models,
  X_test,
  Y_test,
  pred.method = "cenROC",
  pred.attr = "mean",
  times = NULL,
  max_time_points = 15,
  PARALLEL = FALSE,
  verbose = FALSE
)

Arguments

lst_models

List of Coxmos models.

X_test

Numeric matrix or data.frame. Explanatory variables for test data (raw format). Qualitative variables must be transform into binary variables.

Y_test

Numeric matrix or data.frame. Response variables for test data. Object must have two columns named as "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and event observations.

pred.method

Character. AUC evaluation algorithm method for evaluate the model performance. Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I" (default: "cenROC").

pred.attr

Character. Way to evaluate the metric selected. Must be one of the following: "mean" or "median" (default: "mean").

times

Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of 'max_time_points' points will be selected equally distributed (default: NULL).

max_time_points

Numeric. Maximum number of time points to use for evaluating the model (default: 15).

PARALLEL

Logical. Run the cross validation with multicore option. As many cores as your total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).

verbose

Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).

Value

A list of two objects: df: A data.frame which the predictions for the specific model split into the full model (LP) and each component individually. This data.frame is used to plot the information by the function plot_evaluation(). lst_AUC: A list of the full model prediction and its components where the user can check the linear predictors used, the global AUC, the AUC per time point and the predicted time points selected.

Author(s)

Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es

Examples

data("X_proteomic")
data("Y_proteomic")
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,1:50]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,1:50]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox_penalty(X_train, Y_train, n.comp = 2, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
eval_Coxmos_model_per_variable.list(lst_models, X_test, Y_test, pred.method = "cenROC")

Coxmos documentation built on April 4, 2025, 12:20 a.m.