| getAutoKM.list | R Documentation | 
Run the function "getAutoKM" for a list of models. More information in "?getAutoKM".
getAutoKM.list(
  type = "LP",
  lst_models,
  comp = 1:2,
  top = NULL,
  ori_data = TRUE,
  BREAKTIME = NULL,
  n.breaks = 20,
  minProp = 0.2,
  only_sig = FALSE,
  alpha = 0.05,
  title = NULL,
  subtitle = NULL,
  verbose = FALSE
)
| type | Character. Kaplan Meier for complete model linear predictor ("LP"), for PLS components ("COMP") or for original variables ("VAR") (default: LP). | 
| lst_models | List of Coxmos models. | 
| comp | Numeric vector. Vector of length two. Select which components to plot (default: c(1,2)). | 
| top | Numeric. Show "top" first variables. If top = NULL, all variables are shown (default: 10). | 
| ori_data | Logical. Compute the Kaplan-Meier plot with the raw-data or the normalize-data to compute the best cut-point for splitting the data into two groups. Only used when type = "VAR" (default: TRUE). | 
| BREAKTIME | Numeric. Size of time to split the data into "total_time / BREAKTIME + 1" points. If BREAKTIME = NULL, "n.breaks" is used (default: NULL). | 
| n.breaks | Numeric. If BREAKTIME is NULL, "n.breaks" is the number of time-break points to compute (default: 20). | 
| minProp | Numeric. Minimum proportion rate (0-1) for the group of lesser observation when computing an optimal cutoff for numerical variables (default: 0.2). | 
| only_sig | Logical. If "only_sig" = TRUE, then only significant log-rank test variables are returned (default: FALSE). | 
| alpha | Numeric. Numerical values are regarded as significant if they fall below the threshold (default: 0.05). | 
| title | Character. Kaplan-Meier plot title. If NULL, Coxmos model name will be used (default: NULL). | 
| subtitle | Character. Kaplan-Meier plot subtitle (default: NULL). | 
| verbose | Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE). | 
A list of two elements per each model in the list:
info_logrank_num: A list of two data.frames with the numerical variables categorize as
qualitative and the cutpoint to divide the data into two groups.
LST_PLOTS: A list with the Kaplan-Meier Plots.
Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
Kaplan_1958Coxmos
data("X_proteomic")
data("Y_proteomic")
X_proteomic <- X_proteomic[1:30,1:20]
Y_proteomic <- Y_proteomic[1:30,]
set.seed(123)
index_train <- caret::createDataPartition(Y_proteomic$event, p = .5, list = FALSE, times = 1)
X_train <- X_proteomic[index_train,]
Y_train <- Y_proteomic[index_train,]
X_test <- X_proteomic[-index_train,]
Y_test <- Y_proteomic[-index_train,]
splsicox.model <- splsicox(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
splsdrcox.model <- splsdrcox_penalty(X_train, Y_train, n.comp = 1, penalty = 0.5, x.center = TRUE,
x.scale = TRUE)
lst_models = list("sPLSICOX" = splsicox.model, "sPLSDRCOX" = splsdrcox.model)
getAutoKM.list(type = "LP", lst_models)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.