| simulateCyclopsData | R Documentation | 
simulateCyclopsData generates a simulated large, sparse data set for use by fitCyclopsSimulation.
simulateCyclopsData(
  nstrata = 200,
  nrows = 10000,
  ncovars = 20,
  effectSizeSd = 1,
  zeroEffectSizeProp = 0.9,
  eCovarsPerRow = ncovars/100,
  model = "survival"
)
| nstrata | Numeric: Number of strata | 
| nrows | Numeric: Number of observation rows | 
| ncovars | Numeric: Number of covariates | 
| effectSizeSd | Numeric: Standard derivation of the non-zero simulated regression coefficients | 
| zeroEffectSizeProp | Numeric: Expected proportion of zero effect size | 
| eCovarsPerRow | Number: Effective number of non-zero covariates per data row | 
| model | String: Simulation model. Choices are:  | 
A simulated data set
#Generate some simulated data:
sim <- simulateCyclopsData(nstrata = 1, nrows = 1000, ncovars = 2, eCovarsPerRow = 0.5, 
                           model = "poisson")
cyclopsData <- convertToCyclopsData(sim$outcomes, sim$covariates, modelType = "pr", 
                                    addIntercept = TRUE)
#Define the prior and control objects to use cross-validation for finding the 
#optimal hyperparameter:
prior <- createPrior("laplace", exclude = 0, useCrossValidation = TRUE)
control <- createControl(cvType = "auto", noiseLevel = "quiet")
#Fit the model
fit <- fitCyclopsModel(cyclopsData,prior = prior, control = control)  
#Find out what the optimal hyperparameter was:
getHyperParameter(fit)
#Extract the current log-likelihood, and coefficients
logLik(fit)
coef(fit)
#We can only retrieve the confidence interval for unregularized coefficients:
confint(fit, c(0))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.