simulateCyclopsData | R Documentation |
simulateCyclopsData
generates a simulated large, sparse data set for use by fitCyclopsSimulation
.
simulateCyclopsData(
nstrata = 200,
nrows = 10000,
ncovars = 20,
effectSizeSd = 1,
zeroEffectSizeProp = 0.9,
eCovarsPerRow = ncovars/100,
model = "survival"
)
nstrata |
Numeric: Number of strata |
nrows |
Numeric: Number of observation rows |
ncovars |
Numeric: Number of covariates |
effectSizeSd |
Numeric: Standard derivation of the non-zero simulated regression coefficients |
zeroEffectSizeProp |
Numeric: Expected proportion of zero effect size |
eCovarsPerRow |
Number: Effective number of non-zero covariates per data row |
model |
String: Simulation model. Choices are: |
A simulated data set
#Generate some simulated data:
sim <- simulateCyclopsData(nstrata = 1, nrows = 1000, ncovars = 2, eCovarsPerRow = 0.5,
model = "poisson")
cyclopsData <- convertToCyclopsData(sim$outcomes, sim$covariates, modelType = "pr",
addIntercept = TRUE)
#Define the prior and control objects to use cross-validation for finding the
#optimal hyperparameter:
prior <- createPrior("laplace", exclude = 0, useCrossValidation = TRUE)
control <- createControl(cvType = "auto", noiseLevel = "quiet")
#Fit the model
fit <- fitCyclopsModel(cyclopsData,prior = prior, control = control)
#Find out what the optimal hyperparameter was:
getHyperParameter(fit)
#Extract the current log-likelihood, and coefficients
logLik(fit)
coef(fit)
#We can only retrieve the confidence interval for unregularized coefficients:
confint(fit, c(0))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.