Nothing
################################################################################
# #
# DCSmooth Package: estimation of cf coefficients #
# #
################################################################################
# Estimation of the cf coefficient for bandwidth selection
# cf.estimation
# cf.from.model
# Y should be the residuals, e.g. Y - YSmth in the estimation codes
cf.estimation = function(Y, dcs_options, add_options)
{
if (!is.list(add_options$model_order) && length(add_options$model_order) == 1)
{
if (dcs_options$var_model == "sfarima_RSS")
{
model_order = sfarima.ord(Y, pmax = add_options$order_max$ar,
qmax = add_options$order_max$ma,
crit = add_options$model_order, restr = NULL,
sFUN = min, parallel = add_options$parallel)
} else {
model_order = sarma.order(Y, method = "sep",
criterion = add_options$model_order,
order_max = add_options$order_max,
parallel = add_options$parallel)
}
} else {
model_order = add_options$model_order
}
if (dcs_options$var_model == "iid")
{
cf_est = stats::sd(Y)^2
model_est = list(model = list(sigma = stats::sd(Y)), stnry = TRUE)
} else if (dcs_options$var_model == "sarma_HR") {
sarma_HR = sarma.HR.est(Y, model_order = model_order)
cf_est = cf.from.model(sarma_HR$model)
model_est = sarma_HR
} else if (dcs_options$var_model == "np") {
cf_est = specDens(Y, omega = c(0, 0))$cf
model_est = list(stnry = TRUE)
} else if (dcs_options$var_model == "sarma_sep") {
sarma_sep = sarma.sep.est(Y, model_order = model_order)
cf_est = cf.from.model(sarma_sep$model)
model_est = sarma_sep
} else if (dcs_options$var_model == "sarma_RSS") {
sarma_RSS = sarma.RSS.est(Y, model_order = model_order)
cf_est = cf.from.model(sarma_RSS$model)
model_est = sarma_RSS
} else if (dcs_options$var_model == "sfarima_RSS") {
sfarima = sfarima.cf(Y, model_order = model_order)
cf_est = sfarima$cf
model_est = sfarima$var_model
}
if (is.na(cf_est))
{
stop("Non-finite variance estimated. Check input matrix Y.")
}
return(list(cf_est = cf_est, model_est = model_est))
}
# Calculate c_f from estimated model
cf.from.model = function(sarma_model)
{
sum(sarma_model$ma)^2/sum(sarma_model$ar)^2 * sarma_model$sigma^2
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.