Nothing
#' The DEM2 algorithm is a one-step average algorithm in distributed manner, which is used to solve the parameter estimation of multivariate Gaussian mixture model.
#'
#' @param y is a data matrix
#' @param M is the number of subsets
#' @param seed is the recommended way to specify seeds
#' @param alpha0 is the initial value of the mixing weight
#' @param mu0 is the initial value of the mean
#' @param sigma0 is the initial value of the covariance
#' @param i is the number of iterations
#' @param epsilon is the threshold value
#'
#' @return DEM2alpha,DEM2mu,DEM2sigma,DEM2time
#' @export
#'
#' @examples
#' library(mvtnorm)
#' alpha1= c(rep(1/4,4))
#' mu1=matrix(0,nrow=4,ncol=4)
#' for (k in 1:4){
#' mu1[4,]=c(runif(4,(k-1)*3,k*3))
#' }
#' sigma1=list()
#' for (k in 1:4){
#' sigma1[[k]]= diag(4)*0.1
#' }
#' y= matrix(0,nrow=200,ncol=4)
#' for(k in 1:4){
#' y[c(((k-1)*200/4+1):(k*200/4)),] = rmvnorm(200/4,mu1[k,],sigma1[[k]])
#' }
#' M=5
#' seed=123
#' alpha0= alpha1
#' mu0=mu1
#' sigma0=sigma1
#' i=10
#' epsilon=0.005
#' DEM2(y,M,seed,alpha0,mu0,sigma0,i,epsilon)
DEM2=function(y,M,seed,alpha0,mu0,sigma0,i,epsilon){
n=nrow(y)
p=ncol(y)
K=length(alpha0)
nm=n/M
alphaM=c(rep(0,K))
muM=matrix(rep(0, K*p), nrow = K)
sigmaM=list()
for (k in 1:K){
sigmaM[[k]]=matrix(rep(0, p*p), nrow = p)
}
set.seed(seed)
mr=matrix(sample(c(1:n),n,replace=FALSE),nrow = M,ncol=nm,byrow=TRUE)
time1=system.time(for (m in 1:M) {
y1=y[mr[m,],]
alpha=alpha0
mu=mu0
sigma=sigma0
den=matrix(rep(0, K*nm), nrow = nm)
prob=matrix(rep(0, K*nm), nrow = nm)
weight=matrix(rep(0, K*nm), nrow = nm)
for (step in 1:i){
for (k in 1:K){
den[, k]=dmvnorm(y1, mu[k,], sigma[[k]], log=FALSE)
weight[, k]=alpha[k] * den[, k]
}
prob=weight/rowSums(weight)
prob1=colSums(prob)
oldalpha=alpha
oldmu=mu
oldsigma=sigma
for (k in 1:K){
varmat = matrix(0, ncol=ncol(y), nrow=ncol(y))
for (j in 1:nm){
varmat = varmat + prob[j,k] *(y1[j,]-mu[k,])%*%t((y1[j,]-mu[k,]))
}
alpha[k]=prob1[k]/nm
mu[k,] = (t(y1) %*% prob[,k]) / prob1[k]
sigma[[k]] = varmat/prob1[k]
}
Sigma=c(rep(0,K))
for (k in 1:K){
Sigma[k]=max(abs(sigma[[k]]-oldsigma[[k]]))
}
if(max(abs(alpha-oldalpha))<epsilon &
max(abs(mu-oldmu))<epsilon &
max(Sigma)<epsilon)break
cat(
"step",step,"\n",
"alpha",alpha,"\n",
"mu",mu,"\n"
)
}
alphaM=alpha+alphaM
muM=mu+muM
for (k in 1:K){
sigmaM[[k]]=sigma[[k]]+sigmaM[[k]]
}
}
)
alphamao=alphaM/M
mumao=muM/M
sigmamao=list()
for (k in 1:K){
sigmamao[[k]]=sigmaM[[k]]/M
}
time=time1/M
return(list(DEM2alpha=alphamao,DEM2mu=mumao, DEM2sigma=sigmamao,DEM2time=time))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.