Nothing
#' @title Spatial dependence matrix of the factor loadings
#' @description It computes the spatial covariance and precision matrix of the neighboring subregions using Intrinsice Autoregressive Conditional (ICAR) process.
#' @details The off-digonal values are -1 when two subregions are neighbors. Otherwise, we assign 0. The diagonal values are the sum of the values of its own row.
#'
#' @param areapoly The polygon of the areas. We can obtain this through \code{readOGR} function from \code{sp} matrix.
#' @param permutation Permutation order of the subregions
#'
#' @importFrom spdep poly2nb nb2mat
#'
#' @return A list of two matrices: Precision matrix H and the covariance matrix obtained through Moore-Penrose inverse of H.
#' @export
buildH <- function(areapoly, permutation = NA){
if(is.na(permutation[1])){
permutation <- seq(1, nrow(areapoly))
}
areaNB <- poly2nb(areapoly)
areaNBmat <- nb2mat(areaNB,style="B")
areaH <- areaNBmat[permutation,permutation]
areaH[areaH == 1]<--1
R <- ncol(areaH)
for(i in 1:R){areaH[i,i] <- -sum(areaH[i,-i])}
Hplus<-matrix.Moore.Penrose(areaH)
Hlist <- list(areaH, Hplus)
names(Hlist) <- c("H", "Hplus")
return(Hlist)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.