Nothing
#' @title Initialize the first Gibbs sample
#' @description It computes the spatial covariance and precision matrix of the neighboring subregions using Intrinsice Autoregressive Conditional (ICAR) process.
#' @details The off-digonal values are -1 when two subregions are neighbors. Otherwise, we assign 0. The diagonal values are the sum of the values of its own row.
#'
#' @param model.attributes Model attributes from \code{difm.model.attributes}
#'
#' @return A list of the initialized parameters.
#' @noRd
initialize.gibbs.difm <- function(model.attributes){
n <- model.attributes$N
r <- model.attributes$R
k <- model.attributes$L
GG <- model.attributes$GG
tau.current <- rep(.01, k) # Strength of spatial relationship
b.current <- matrix(0, nrow = r, ncol = k)
for(l in 1:k) b.current[l,l] <- 1
x.current <- matrix(0,nrow = n,ncol = k)
x.current[,1] <- rnorm(n)
theta.length <- nrow(GG)
theta.current <- matrix(0, nrow = n, ncol = theta.length)
theta.current[,1] <- x.current[,1]
sigma2.current <- rep(1, r)
W.current <- diag(2*k)
Gibbs.current <- list(b.current, sigma2.current, x.current, theta.current, tau.current, W.current)
names(Gibbs.current) <- c("B", "sigma2", "X", "theta", "tau", "W")
return(Gibbs.current)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.