dm.hdf | R Documentation |
Implements Fare's hyperbolic distance function (semi-radial & non-oriented measure).
dm.hdf(xdata, ydata, rts="crs",
wd=NULL, se=FALSE, sg="ssm", date=NULL, cv="convex", o=NULL)
xdata |
Input(s) vector (n by m) |
ydata |
Output(s) vector (n by s) |
rts |
Returns to scale assumption |
wd |
Weak disposability vector indicating (an) undesirable output(s) (1 by s) |
se |
Implements super-efficiency model alike Anderson & Peterson's model if |
sg |
Employs second-stage optimization |
date |
Production date (n by 1) |
cv |
Convexity assumption |
o |
DMU index to calc. |
$eff |
Efficiency score |
$lambda |
Intensity vector |
$mu |
Secondary intensity vector for weak disposability under VRS |
$xslack |
Input slack |
$yslack |
Output slack |
$iteration |
The number of iteration to obtain the hyperbolic efficiency score |
Dong-Joon Lim, PhD
Fare, R., Shawna Grosskopf, and CA Knox Lovell. The Measurement of Efficiency of Production. Boston: Kulwer-Nijhoff (1985).
Fare, Rolf, et al. "Estimating the hyperbolic distance function: A directional distance function approach." European Journal of Operational Research 254.1 (2016): 312~319.
dm.ddf
Distance measure using DDF
dm.dea
Distance measure using DEA
dm.hdf
Distance measure using HDF
dm.sbm
Distance measure using SBM
dm.sf
Distance measure using SF
# Reproduce Table 2 in Fare et al.(2016)
# ready
x <- data.frame(x1 = c(2, 4, 9, 6.5, 10, 6, 9))
y <- data.frame(y1 = c(3, 7, 10, 8.5, 4, 2, 8))
# go
sf <- dm.sf (x, y, "vrs")$eff
hdf <- dm.hdf(x, y, "vrs")$eff
matrix(t(cbind(sf, hdf)), 2, 7,
dimnames = list(c("SF", "HDF"),
paste0("DMU_", c(letters[1:4], "o", "p", "q"))))
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.