FindSVGs | R Documentation |
Identifies features that have spatially variation along spots using SPARK-X.
FindSVGs(seu, nfeatures=2000, covariates=NULL,
preHVGs=5000,num_core=1, verbose=TRUE)
seu |
an object of class "Seurat". |
nfeatures |
a positive integer, means how many spatially variable genes to be chosen. If there are less than 2000 features in seu, then all features are identified. |
covariates |
a covariate matrix named control variable matrix whose number of rows is equal to the number of columns of seu. |
preHVGs |
a positive integer, the number of highly variable genes selected for speeding up computation of SPARK-X in selecting spatially variable features. |
num_core |
an optional positive integer, specify the cores used for identifying the SVGs in parallel. |
verbose |
an optional logical value, whether output the related information. |
Nothing
return a revised Seurat object by adding three columns named "is.SVGs", "order.SVGs" and "adjusted.pval.SVGs" in the meta.features of default Assay.
nothing
Zhu, J., Sun, S., Zhou, X.: Spark-x: non-parametric modeling enables scalable and robust detection of spatialexpression patterns for large spatial transcriptomic studies. Genome Biology 22(1), 1-25 (2021)
topSVGs
seu<-gendata_RNAExp(height=20, width=20,p=200, K=4)
seu<-FindSVGs(seu, nfeatures=100)
topSVGs(seu)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.