RunWPCA | R Documentation |
Run a weighted PCA dimensionality reduction
RunWPCA(object, q=15)
### S3 method for class "Seurat"
## RunWPCA(object, q=15)
### S3 method for class "matrix"
## RunWPCA(object, q=15)
### S3 method for class "dgCMatrix"
## RunWPCA(object, q=15)
object |
an object named "Seurat", "maxtrix" or "dgCMatrix". The object of class "Seurat" must include slot "scale.data". |
q |
an optional positive integer, specify the number of features to be extracted. |
Nothing
For Seurat object, return a Seurat object. For objcet "matrix" and "dgCMatrix", return a object "matrix" with rownames same as the colnames of X
, and colnames "WPCA1" to "WPCAq".
nothing
Wei Liu
Bai, J. and Liao, Y. (2017). Inferences in panel data with interactive effects using large covariance matrices. Journal of Econometrics, 200(1):59–78.
None
## Not run:
library(Seurat)
seu <- gendata_RNAExp(height=20, width=20,p=100, K=4)
## log-normalization
seu <- NormalizeData(seu)
##
seu <- FindVariableFeatures(seu, nfeatures=80)
## Scale
seu <- ScaleData(seu)
## Run WPCA
seu <- RunWPCA(seu)
seu
## Run tSNE based on wpca
seu <- RunTSNE(seu, reduction='wpca')
seu
## Find SVGs
seu <- FindSVGs(seu, nfeatures=80)
(genes <- topSVGs(seu, ntop=10))
Idents(seu) <- factor(paste0("cluster", seu$true_clusters), levels=paste0("cluster",1:4))
RidgePlot(seu, features = genes[1:2], ncol = 2)
FeaturePlot(seu, features = genes[1:2], reduction = 'tsne' ,ncol=2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.