acc.1test | R Documentation |
Sensitivity and specificity, (positive and negative) predictive values and (positive and negative) diagnostic likelihood ratios of a single binary diagnostic test.
acc.1test(tab, alpha, testname, method.ci, ...)
tab |
An object of class |
alpha |
Significance level alpha for 100(1-alpha)%-confidence intervals, the default is 0.05. |
testname |
A character string containing the name of the diagnostic test. |
method.ci |
A character string with the name of the function to compute
the confidence intervals for sensitivity, specificity, and predictive values.
The default is |
... |
Additional arguments (usually not required). |
The calculation of accuracy measures follows standard methodology, e.g. described in Pepe (2003) or Zhou et al. (2011).
The confidence intervals for sensitivity, specificity, and predictive values are
computed using the methodology implemented in the function passed to the
argument method.ci
.
Available options are:
waldci
- Wald asymptotic normal-based confidence interval; the
default,
logitci
- asymptotic normal-based confidence interval on the
logit scale and then back-transformed,
exactci
- Clopper-Pearson exact confidence interval,
add4cici
- Agresti-Coull add-4 confidence interval,
addz2ci
- Agresti-Coull add-z^2/2 confidence interval,
blakerci
- Blaker exact confidence interval,
scoreci
- Wilson score confidence interval,
midPci
- mid-P confidence interval.
Options (3) to (8) are based on the homonymous functions from the {PropCIs}
package. Please see the respective package documentation for more details.
Confidence intervals for diagnostic likelihood ratios are computed according to Simel et al. (1991).
A list of class acc.1test
:
tab |
A contingency table (matrix) of test results; the same
| ||||||||||||||||
sensitivity |
A numeric vector containing the estimated sensitivity ( | ||||||||||||||||
specificity |
A numeric vector containing the estimated specificity ( | ||||||||||||||||
ppv |
A numeric vector containing the estimated positive predictive value ( | ||||||||||||||||
npv |
A numeric vector containing the estimated negative predictive value ( | ||||||||||||||||
pdlr |
A numeric vector containing the estimated positive diagnostic likelihood ratio ( | ||||||||||||||||
ndlr |
A numeric vector containing the estimated negative diagnostic likelihood ratio ( | ||||||||||||||||
alpha |
The significance level alpha used to compute 100(1-alpha)%-confidence intervals, the default is 0.05. | ||||||||||||||||
testname |
A character string containing the name of the diagnostic test. | ||||||||||||||||
method.ci |
A character string describing the method used to compute the confidence intervals for sensitivity, specificity, and predictive values. |
Pepe, M. (2003). The statistical evaluation of medical tests for classification and prediction. Oxford Statistical Science Series. Oxford University Press, 1st edition.
Simel, D.L., Samsa, G.P., Matchar, D.B. (1991). Likelihood ratios with confidence: sample size estimation for diagnostic test studies. J Clin Epidemiol, 44(8):763-70.
Zhou, X., Obuchowski, N., and McClish, D. (2011). Statistical Methods in Diagnostic Medicine. Wiley Series in Probability and Statistics. John Wiley & Sons, Hoboken, New Jersey, 2nd edition.
tab.1test
,
print.acc.1test
,
acc.paired
.
data(Paired1) # Hypothetical study data
a1 <- tab.1test(d=d, y=y1, data=Paired1)
a2 <- acc.1test(a1)
print(a2)
a3 <- acc.1test(a1, method="exactci", conf.level=0.99)
print(a3)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.