R/DTComPair.R

Defines functions ellipse.pv.rpv pv.rpv pv.wgs pv.gs sesp.exactbinom sesp.mcnemar represent.long print.acc.paired acc.paired generate.paired read.tab.paired print.tab.paired tab.paired print.acc.1test acc.1test read.tab.1test print.tab.1test tab.1test

Documented in acc.1test acc.paired ellipse.pv.rpv generate.paired print.acc.1test print.acc.paired print.tab.1test print.tab.paired pv.gs pv.rpv pv.wgs read.tab.1test read.tab.paired represent.long sesp.exactbinom sesp.mcnemar tab.1test tab.paired

# --------------------------------------------------------
# Description: Functions for DTComPair-package
# Authors: C. Stock and A. Discacciati 
# --------------------------------------------------------


# --------------------------------------------------------
# tab.1test
# --------------------------------------------------------
#' @export
tab.1test <-  function(d, y, data=NULL, testname, ...) {
  # check arguments
  if (missing(d)) stop("Disease status (d) is missing.")
  if (missing(y)) stop("Test result (y) is missing.") 
  if (missing(testname)) testname <- deparse(substitute(y))
  d <- eval(substitute(d), data, parent.frame())
  y <- eval(substitute(y), data, parent.frame())  
  if ((is.numeric(d)==FALSE) & (is.factor(d)==FALSE)) 
    stop("Disease status (d) must be an integer variable.")
  if ((is.numeric(y)==FALSE) & (is.factor(y)==FALSE))
    stop("Test result (y) must be a integer variable.")
  d <- as.integer(d); y <- as.integer(y); 
  if (all(unique(d) %in% as.integer(c(0, 1))) == FALSE) 
    stop("Disease status (d) must be coded as 0 or 1.")
  if (all(unique(y) %in% as.integer(c(0, 1))) == FALSE) 
    stop("Test result (y) must be coded as 0 or 1.")
  if ((length(d) != length(y))) stop("Vector lengths differ.") 
  # matrix
  tab.1t <- matrix(rep(0,9), nrow=3, 
                   dimnames=list(c("Test pos.","Test neg.","Total"),
                                 c("Diseased","Non-diseased","Total")))
  data.1t <- data.frame(cbind(d,y))
  tab.1t[1,1] <- nrow(subset(data.1t, d==1 & y==1))
  tab.1t[1,2] <- nrow(subset(data.1t, d==0 & y==1))
  tab.1t[1,3] <- tab.1t[1,1]+tab.1t[1,2]
  tab.1t[2,1] <- nrow(subset(data.1t, d==1 & y==0))
  tab.1t[2,2] <- nrow(subset(data.1t, d==0 & y==0))
  tab.1t[2,3] <- tab.1t[2,1]+tab.1t[2,2]
  tab.1t[3,1] <- tab.1t[1,1]+tab.1t[2,1]
  tab.1t[3,2] <- tab.1t[1,2]+tab.1t[2,2]
  tab.1t[3,3] <- tab.1t[1,3]+tab.1t[2,3]   
  # results
  results <- list(tab.1t, testname)
  names(results) <- c("tab.1test", "testname")    
  class(results) <- "tab.1test"
  return(results)
}

#' @exportS3Method print tab.1test
print.tab.1test <- function(x,...) {
  cat(paste("Binary diagnostic test '",x$testname,"'\n\n",sep=''))
  colnames(x$tab.1test)[2] <- "Non-diseased"
  print(x$tab.1test)
}


# --------------------------------------------------------
# read.tab.1test
# --------------------------------------------------------
#' @export
read.tab.1test <-  function(a, b, c, d, testname, ...) {
  if (missing(testname)) testname <- "Noname"
  tab.1t <- matrix(rep(0,9), nrow=3, 
                   dimnames=list(c("Test pos.","Test neg.","Total"),
                                 c("Diseased","Non-diseased","Total")))
  tab.1t[1,1] <- a; tab.1t[1,2] <- b
  tab.1t[1,3] <- a+b
  tab.1t[2,1] <- c; tab.1t[2,2] <- d
  tab.1t[2,3] <- c+d
  tab.1t[3,1] <- a+c; tab.1t[3,2] <- b+d
  tab.1t[3,3] <- a+b+c+d
  # results
  results <- list(tab.1t, testname)
  names(results) <- c("tab.1test", "testname")    
  class(results) <- "tab.1test"
  return(results)
}


# --------------------------------------------------------
# acc.1test
# --------------------------------------------------------
#' @export
acc.1test <- function(tab, alpha, testname, method.ci, ...) {
  
  # check arguments
  
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.1test", which=F))) stop("Table must be of class 'tab.1test'")
  if (missing(testname)) testname <- tab$testname
  if (missing(method.ci)) method.ci <- "waldci"
  assert_that(
    method.ci %in% c(
      "waldci",
      "logitci",
      "exactci",
      "add4ci",
      "addz2ci",
      "blakerci",
      "scoreci",
      "midPci"
    )
  )
  
  # Functions to compute confidence intervals (not contained in PropCIs package)
  
  waldci <- function(x, n, conf.level){
    stopifnot(n > 0, x <= n, conf.level > 0, conf.level < 1)
    alpha <- 1-conf.level
    if (isTRUE(x > 0 & x < n)) {
      stderr <- sqrt(x*(n-x)/n^3)
      lowlim <- max(0, x/n - qnorm(alpha/2, lower.tail = FALSE) * stderr)
      uplim <- min(x/n + qnorm(alpha/2, lower.tail = FALSE) * stderr, 1)  
    } else if (isTRUE(x == 0)) { # if x/n is 0 -> rule of three and no stderr
      stderr <- NA
      lowlim <- 0
      uplim <- -log(alpha)/n
    } else if (isTRUE(x == n)) { # if x/n is 1 -> rule of three and no stderr
      stderr <- NA
      lowlim <- 1 + log(alpha)/n
      uplim <- 1
    }
    cint <- c(lowlim, uplim)
    attr(cint, "conf.level") <- conf.level
    method <- "Wald's asymptotic normal-based"
    rval <- list(stderr = stderr, conf.int = cint, method = method)
    class(rval) <- "htest"
    return(rval)
  }
  
  logitci <- function(x, n, conf.level){
    stopifnot(n > 0, x <= n, conf.level > 0, conf.level < 1)
    alpha <- 1-conf.level
    if (isTRUE(x > 0 & x < n)) {
      stderr <- sqrt(n/(x*(n-x)))
      lowlim <- stats::plogis(stats::qlogis(x/n) - qnorm(alpha/2, lower.tail = FALSE) * stderr)
      uplim <-  stats::plogis(stats::qlogis(x/n) + qnorm(alpha/2, lower.tail = FALSE) * stderr)
    } else { # no stderr and ci if x/n is 0 or 1
      stderr <- uplim <- lowlim <- NA
    }
    cint <- c(lowlim, uplim)
    attr(cint, "conf.level") <- conf.level
    method <- "Logit asymptotic"
    rval <- list(stderr = stderr, conf.int = cint, method = method)
    class(rval) <- "htest"
    return(rval)
  }
  
  # Set confidence interval method
  
  method.ci.fun <- ifelse(
    test = (method.ci %in% c("waldci", "logitci")),
    yes = get(x = method.ci),
    no = get(x = method.ci, envir = asNamespace("PropCIs"))
    )
  
  # Compute accuracy measures
  
  tab <- tab[[1]]
  if (missing(alpha)) alpha <- 0.05
  emptylist <- list(stderr=NA, conf.int=c(NA, NA))
  # sensitivity and specificity
  sens.est <- tab[1,1]/tab[3,1]
  sens.ci <- if (tab[3, 1] > 0)
    do.call(method.ci.fun, list(
      x = tab[1, 1],
      n = tab[3, 1],
      conf.level = 1 - alpha
    ))
  else
    emptylist
  sensitivity <- c(sens.est,unlist(utils::modifyList(emptylist, sens.ci[c("stderr", "conf.int")])))
  names(sensitivity) <- c("est","se","lcl","ucl")
  spec.est <- tab[2,2]/tab[3,2]
  spec.ci <- if (tab[3,2]>0) 
    do.call(method.ci.fun, list(
      x = tab[2, 2],
      n = tab[3, 2],
      conf.level = 1 - alpha
    ))
  else
    emptylist
  specificity <- c(spec.est,unlist(utils::modifyList(emptylist, spec.ci[c("stderr", "conf.int")])))
  names(specificity) <- c("est","se","lcl","ucl")
  # predictive values
  ppv.est <- tab[1,1]/tab[1,3]
  ppv.ci <- if (tab[1,3]>0) 
    do.call(method.ci.fun, list(
      x = tab[1, 1],
      n = tab[1, 3],
      conf.level = 1 - alpha
    ))
  else
    emptylist
  ppv <- c(ppv.est,unlist(utils::modifyList(emptylist, ppv.ci[c("stderr", "conf.int")])))
  names(ppv) <- c("est","se","lcl","ucl")
  npv.est <- tab[2,2]/tab[2,3]
  npv.ci <- if (tab[2,3]>0) 
    do.call(method.ci.fun, list(
      x = tab[2, 2],
      n = tab[2, 3],
      conf.level = 1 - alpha
    ))
  else
    emptylist
  npv <- c(npv.est,unlist(utils::modifyList(emptylist, npv.ci[c("stderr", "conf.int")])))
  names(npv) <- c("est","se","lcl","ucl")
  
  # Diagnostic likelihood ratios
  pdlr.est <- sens.est / (1 - spec.est)
  pdlr.se.log <- sqrt(((1 - sens.est) / (tab[1, 1])) +
                        (spec.est / tab[1, 2]))
  pdlr.lcl <- exp(log(pdlr.est) - qnorm(1 - alpha / 2) * pdlr.se.log)
  pdlr.ucl <- exp(log(pdlr.est) + qnorm(1 - alpha / 2) * pdlr.se.log)
  pdlr <- c(pdlr.est,pdlr.se.log,pdlr.lcl,pdlr.ucl)
  names(pdlr) <- c("est","se.ln","lcl","ucl")
  ndlr.est <- (1-sens.est)/spec.est
  ndlr.se.log <- sqrt((sens.est/tab[2,1])+((1-spec.est)/
                 tab[2,2]))
  ndlr.lcl <- exp(log(ndlr.est)-qnorm(1-alpha/2)*ndlr.se.log)
  ndlr.ucl <- exp(log(ndlr.est)+qnorm(1-alpha/2)*ndlr.se.log)
  ndlr <- c(ndlr.est,ndlr.se.log,ndlr.lcl,ndlr.ucl)
  names(ndlr) <- c("est","se.ln","lcl","ucl")
  
  # Collate and return results

  results <- list(
    "tab" = tab,
    "sensitivity" = sensitivity,
    "specificity" = specificity,
    "ppv" = ppv,
    "npv" = npv,
    "pdlr" = pdlr,
    "ndlr" = ndlr,
    "alpha" = alpha,
    "testname" = testname,
    "method.ci" = as.character(substitute(method.ci))
  )
  class(results) <- "acc.1test"
  return(results)
  
}


#' @exportS3Method print acc.1test
print.acc.1test <- function(x, ...) {
  cat(paste("Diagnostic accuracy of test '", x$testname, "'\n", sep = ''))
  cat(
    paste(
      "\n(Estimates, standard errors and ",
      100 * (1 - x$alpha),
      "%-confidence intervals)\n\n",
      sep = ""
    )
  )
  acc.mat1 <- matrix(
    data = c(x$sensitivity[1:4],
             x$specificity[1:4],
             x$ppv[1:4], x$npv[1:4]),
    nrow = 4,
    ncol = 4,
    byrow = TRUE,
    dimnames = list(
      c("Sensitivity", "Specificity", "PPV", "NPV"),
      c("Est.", "SE", "Lower CL", "Upper CL")
    )
  )
  print(acc.mat1)
  cat("\n")
  acc.mat2 <- matrix(
    data = c(x$pdlr[1:4], x$ndlr[1:4]),
    nrow = 2,
    ncol = 4,
    byrow = TRUE,
    dimnames = list(c("PDLR ", "NDLR "),
                    c("Est.", "SE (log)", "Lower CL", "Upper CL"))
  )
  print(acc.mat2)
}


# --------------------------------------------------------
# tab.paired
# --------------------------------------------------------
#' @export
tab.paired <-  function(d, y1, y2, data=NULL, testnames, ...) {
  # check arguments
  if (missing(d)) stop("Disease status (d) is missing.")
  if (missing(y1)) stop("Test result (y1) is missing.") 
  if (missing(y2)) stop("Test result (y2) is missing.")
  if (missing(testnames)) testnames <- c(deparse(substitute(y1)),
                                         deparse(substitute(y2)))
  d <- eval(substitute(d), data, parent.frame())
  y1 <- eval(substitute(y1), data, parent.frame())
  y2 <- eval(substitute(y2), data, parent.frame())  
  if ((is.numeric(d)==FALSE) & (is.factor(d)==FALSE)) 
    stop("Disease status (d) must be a numeric or factor variable.")
  if ((is.numeric(y1)==FALSE) & (is.factor(y1)==FALSE))
    stop("Test result (y1) must be a numeric or factor variable.")
  if ((is.numeric(y2)==FALSE) & (is.factor(y2)==FALSE))
    stop("Test result (y2) must be a numeric or factor variable.")
  d <- as.integer(d); y1 <- as.integer(y1); y2 <- as.integer(y2);
  if (all(unique(d) %in% as.integer(c(0, 1))) == FALSE)
    stop("Disease status (d) must be coded as 0 or 1.")
  if (all(unique(y1) %in% as.integer(c(0, 1))) == FALSE)
    stop("Test result (y1) must be coded as 0 or 1.")
  if (all(unique(y2) %in% as.integer(c(0, 1))) == FALSE) 
    stop("Test result (y2) must be coded as 0 or 1.")
  if ((length(d) != length(y1)) | (length(y1) != length(y2)) ) 
    stop("Vector lengths differ.")
  ## matrices
  data.paired <- data.frame(d,y1,y2)
  # diseased
  tab.d <- matrix(rep(0,9), nrow=3, dimnames=list(
                    c("Test2 pos.","Test2 neg.","Total"),
                    c("Test1 pos.","Test1 neg.","Total")))
  tab.d[1,1] <- nrow(subset(data.paired, d==1 & y1==1 & y2==1))
  tab.d[1,2] <- nrow(subset(data.paired, d==1 & y1==0 & y2==1))
  tab.d[1,3] <- tab.d[1,1]+tab.d[1,2]
  tab.d[2,1] <- nrow(subset(data.paired, d==1 & y1==1 & y2==0))
  tab.d[2,2] <- nrow(subset(data.paired, d==1 & y1==0 & y2==0))
  tab.d[2,3] <- tab.d[2,1]+tab.d[2,2]
  tab.d[3,1] <- tab.d[1,1]+tab.d[2,1]
  tab.d[3,2] <- tab.d[1,2]+tab.d[2,2]
  tab.d[3,3] <- tab.d[1,3]+tab.d[2,3]
  # non-diseased
  tab.nd <- matrix(rep(0,9), nrow=3, dimnames=list(
                    c("Test2 pos.","Test2 neg.","Total"),
                    c("Test1 pos.","Test1 neg.","Total")))
  tab.nd[1,1] <- nrow(subset(data.paired, d==0 & y1==1 & y2==1))
  tab.nd[1,2] <- nrow(subset(data.paired, d==0 & y1==0 & y2==1))
  tab.nd[1,3] <- tab.nd[1,1]+tab.nd[1,2]
  tab.nd[2,1] <- nrow(subset(data.paired, d==0 & y1==1 & y2==0))
  tab.nd[2,2] <- nrow(subset(data.paired, d==0 & y1==0 & y2==0))
  tab.nd[2,3] <- tab.nd[2,1]+tab.nd[2,2]
  tab.nd[3,1] <- tab.nd[1,1]+tab.nd[2,1]
  tab.nd[3,2] <- tab.nd[1,2]+tab.nd[2,2]
  tab.nd[3,3] <- tab.nd[1,3]+tab.nd[2,3]
  # results
  results <- list(tab.d, tab.nd, testnames)
  names(results) <- c("diseased","non.diseased","testnames")    
  class(results) <- "tab.paired"
  return(results)
}

#' @exportS3Method print tab.paired
print.tab.paired <- function(x,...) {
  cat("Two binary diagnostic tests (paired design)")
  cat("\n\n")
  cat("Test1: '",x$testnames[1],"'\n",
      "Test2: '",x$testnames[2],"'\n\n", sep="")
  cat("Diseased:\n") 
  print(x$diseased)
  cat("\n")
  cat("Non-diseased:\n")
  print(x$non.diseased)
  cat("\n")
}


# --------------------------------------------------------
# read.tab.paired
# --------------------------------------------------------
#' @export
read.tab.paired <-  function(d.a, d.b, d.c, d.d,
                             nd.a, nd.b, nd.c, nd.d,
                             testnames, ...) {
  if (missing(testnames)) testnames <- c("Noname 1","Noname 2")
  # diseased
  tab.d <- matrix(rep(0,9), nrow=3, dimnames=list(
    c("Test2 pos.","Test2 neg.","Total"),
    c("Test1 pos.","Test1 neg.","Total")))
  tab.d[1,1] <- d.a; tab.d[1,2] <- d.b
  tab.d[1,3] <- d.a+d.b
  tab.d[2,1] <- d.c; tab.d[2,2] <- d.d
  tab.d[2,3] <- d.c+d.d
  tab.d[3,1] <- d.a+d.c; tab.d[3,2] <- d.b+d.d
  tab.d[3,3] <- d.a+d.b+d.c+d.d
  # non-diseased
  tab.nd <- matrix(rep(0,9), nrow=3, dimnames=list(
    c("Test2 pos.","Test2 neg.","Total"),
    c("Test1 pos.","Test1 neg.","Total")))
  tab.nd[1,1] <- nd.a; tab.nd[1,2] <- nd.b
  tab.nd[1,3] <- nd.a+nd.b
  tab.nd[2,1] <- nd.c; tab.nd[2,2] <- nd.d
  tab.nd[2,3] <- nd.c+nd.d
  tab.nd[3,1] <- nd.a+nd.c; tab.nd[3,2] <- nd.b+nd.d
  tab.nd[3,3] <- nd.a+nd.b+nd.c+nd.d   
  # results
  results <- list(tab.d, tab.nd, testnames)
  names(results) <- c("diseased","non.diseased","testnames")    
  class(results) <- "tab.paired"
  return(results)
}


# --------------------------------------------------------
# generate.paired
# --------------------------------------------------------
#' @export
generate.paired <- function(tab, ...) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  testnames <- tab$testnames
  # generate dataframe
  df <- expand.grid(d=c(1,0), y1=c(1,0), y2=c(1,0))
  df <- df[with(df, order(-d,-y1,-y2)), ]
  n <- c(tab$diseased[1,1], tab$diseased[2,1],
         tab$diseased[1,2], tab$diseased[2,2],
         tab$non.diseased[1,1], tab$non.diseased[2,1],
         tab$non.diseased[1,2], tab$non.diseased[2,2])
  df <- as.data.frame(cbind(df,n))
  df <- df[rep(seq(dim(df)[1]), df$n),-4]
  rownames(df) <- NULL
  return(df)
}


# --------------------------------------------------------
# acc.paired
# --------------------------------------------------------
#' @export
acc.paired <-  function(tab, alpha, method.ci, ...) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) stop("Table must be of class 'tab.paired'")
  if (missing(alpha)) alpha <- 0.05
  if (missing(method.ci)) method.ci <- "waldci"
  # tables for each test
  test1 <- read.tab.1test(tab$diseased[3,1], tab$non.diseased[3,1],
                          tab$diseased[3,2], tab$non.diseased[3,2], 
                          testname=tab$testnames[1])
  test2 <- read.tab.1test(tab$diseased[1,3], tab$non.diseased[1,3],
                          tab$diseased[2,3], tab$non.diseased[2,3], 
                          testname=tab$testnames[2])
  # accuracy of each test
  acc.test1 <- acc.1test(tab = test1, alpha = alpha, method.ci = method.ci)
  acc.test2 <- acc.1test(tab = test2, alpha = alpha, method.ci = method.ci)
  # results
  results <- list(acc.test1, acc.test2)
  names(results) <- c("Test1","Test2")
  class(results) <- "acc.paired"
  return(results)
}

#' @exportS3Method print acc.paired
print.acc.paired <- function(x,...) {
  print(x[[1]]); 
  cat("\n----------------------------------------------------------\n")
  print(x[[2]])
}


# --------------------------------------------------------
# represent.long
# --------------------------------------------------------
#' @export
represent.long <- function(d, y1, y2) {
  df <- data.frame(d, y1, y2)
  colnames(df) <- c("d","y1","y2")
  df$id <- 1:nrow(df)
  dt1 <- df[,c(4,1,2)]; colnames(dt1)[3] <- "y"
  dt1$x <- rep(1,nrow(dt1))
  dt2 <- df[,c(4,1,3)]; colnames(dt2)[3] <- "y"
  dt2$x <- rep(0,nrow(dt2))
  df <- as.data.frame(rbind(dt1, dt2))
  df <- df[with(df, order(id)), ]
  df <- df[,c(1,2,4,3)]
  row.names(df) <- 1:nrow(df)
  return(df)
}


# --------------------------------------------------------
# sesp.mcnemar
# --------------------------------------------------------
#' @export
sesp.mcnemar <- function(tab) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  # accuracy
  acc <- acc.paired(tab)
  # sensitivity
  se.1 <- acc$Test1$sensitivity["est"]; se.2 <- acc$Test2$sensitivity["est"]
  names(se.1) <- NULL; names(se.2) <- NULL
  diff.sens <- (se.2-se.1); names(diff.sens) <- NULL
  b <- tab$diseased[1,2]; c <- tab$diseased[2,1]
  X2 <- ((b-c)^2)/(b+c)
  p.value <- 1-pchisq(X2, df=1)
  sensitivity <- c(se.1, se.2, diff.sens, X2, p.value)
  # specificity
  sp.1 <- acc$Test1$specificity["est"]; sp.2 <- acc$Test2$specificity["est"]
  names(sp.1) <- NULL; names(sp.2) <- NULL
  diff.spec <- (sp.2-sp.1); names(diff.spec) <- NULL
  b <- tab$non.diseased[1,2]; c <- tab$non.diseased[2,1]
  X2 <- ((b-c)^2)/(b+c)
  p.value <- 1-pchisq(X2, df=1)
  specificity <- c(sp.1, sp.2, diff.spec, X2, p.value)
  # results
  method <- "mcnemar"
  results <- list(sensitivity, specificity, method)
  names(results) <- c("sensitivity","specificity","method")
  names(results$sensitivity) <- c("test1","test2","diff","test.statistic","p.value")
  names(results$specificity) <- c("test1","test2","diff","test.statistic","p.value")
  return(results)
}


# --------------------------------------------------------
# sesp.exactbinom
# --------------------------------------------------------
#' @export
sesp.exactbinom <- function(tab) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  # accuracy
  acc <- acc.paired(tab)
  # sensitivity
  se.1 <- acc$Test1$sensitivity["est"]; se.2 <- acc$Test2$sensitivity["est"]
  names(se.1) <- NULL; names(se.2) <- NULL
  diff.sens <- (se.2-se.1); names(diff.sens) <- NULL
  m <- tab$diseased[1,2] + tab$diseased[2,1]
  k <- min(tab$diseased[1,2], tab$diseased[2,1])
  csum <- 0; for (j in 0:k) csum <- csum+choose(m,j)
  p.value <- 2*csum*(0.5^m)
  sensitivity <- c(se.1,se.2,diff.sens,p.value)
  # specificity
  sp.1 <- acc$Test1$specificity["est"]; sp.2 <- acc$Test2$specificity["est"]
  names(sp.1) <- NULL; names(sp.2) <- NULL
  diff.spec <- (sp.2-sp.1); names(diff.spec) <- NULL
  m <- tab$non.diseased[1,2] + tab$non.diseased[2,1]
  k <- min(tab$non.diseased[1,2], tab$non.diseased[2,1])
  csum <- 0; for (j in 0:k) csum <- csum+choose(m,j)
  p.value <- 2*csum*(0.5^m)
  specificity <- c(sp.1,sp.2,diff.spec,p.value)
  # results
  method <- "exactbinom"
  results <- list(sensitivity,specificity,method) 
  names(results) <- c("sensitivity","specificity","method")
  names(results$sensitivity) <- c("test1","test2","diff","p.value")
  names(results$specificity) <- c("test1","test2","diff","p.value")
  return(results)
}


# --------------------------------------------------------
# pv.gs
# --------------------------------------------------------
#' @export
pv.gs <- function(tab) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  # accurac
  acc <- acc.paired(tab)
  ## ppv
  ppv.1 <- acc$Test1$ppv["est"]; ppv.2 <- acc$Test2$ppv["est"]
  names(ppv.1) <- NULL; names(ppv.2) <- NULL
  diff.ppv <- ppv.2-ppv.1; names(diff.ppv) <- NULL
  # proportion of positive tests of type 2
  z.bar <- sum(c(tab$diseased[1,3], tab$non.diseased[1,3])) /
           sum(c(tab$diseased[1,c(1,3)], tab$diseased[2,1],
                 tab$non.diseased[1,c(1,3)], tab$non.diseased[2,1]))
  # all positive  tests in diseased subjects / all positive tests
  d.bar <- sum(c(tab$diseased[1,c(1,1,2)], tab$diseased[2,1])) /
           sum(c(tab$diseased[1,c(1,1,2)], tab$diseased[2,1],
                 tab$non.diseased[1,c(1,1,2)], tab$non.diseased[2,1]))
  numerator <- (tab$diseased[1,1]*(1-2*z.bar) + 
                tab$diseased[1,2]*(1-z.bar) + 
                tab$diseased[2,1]*(0-z.bar))^2 
  denominator <- (1-d.bar)^2 * 
                 (tab$diseased[1,1]*(1-2*z.bar)^2 + 
                  tab$diseased[1,2]*(1-z.bar)^2 + 
                  tab$diseased[2,1]*(0-z.bar)^2 ) +
                 (0-d.bar)^2 * 
                  (tab$non.diseased[1,1]*(1-2*z.bar)^2 + 
                   tab$non.diseased[1,2]*(1-z.bar)^2 + 
                   tab$non.diseased[2,1]*(0-z.bar)^2 )
  t.ppv <- numerator/denominator
  p.value <- 1-pchisq(t.ppv, df=1) 
  ppv <- c(ppv.1, ppv.2, diff.ppv, t.ppv, p.value)
  ## npv
  npv.1 <- acc$Test1$npv["est"]; npv.2 <- acc$Test2$npv["est"]
  names(npv.1) <- NULL; names(npv.2) <- NULL
  diff.npv <- npv.2-npv.1; names(diff.npv) <- NULL
  # proportion of negative tests of type 2
  z.bar <- sum(c(tab$diseased[2,3], tab$non.diseased[2,3])) /
           sum(c(tab$diseased[2,c(2,3)], tab$diseased[1,2],
                 tab$non.diseased[2,c(2,3)], tab$non.diseased[1,2]))
  # all negative tests in non-diseased subjects / all negative tests
  d.bar <- sum(c(tab$non.diseased[2,c(2,3)], tab$non.diseased[1,2])) /
           sum(c(tab$diseased[2,c(2,3)], tab$diseased[1,2],
                 tab$non.diseased[2,c(2,3)], tab$non.diseased[1,2]))
  numerator <- (tab$non.diseased[2,2]*(1-2*z.bar) + 
                tab$non.diseased[2,1]*(1-z.bar) + 
                tab$non.diseased[1,2]*(0-z.bar))^2 
  denominator <- (1-d.bar)^2 * 
                  (tab$non.diseased[2,2]*(1-2*z.bar)^2 + 
                   tab$non.diseased[2,1]*(1-z.bar)^2 + 
                   tab$non.diseased[1,2]*(0-z.bar)^2 ) +
                 (0-d.bar)^2 * 
                  (tab$diseased[2,2]*(1-2*z.bar)^2 + 
                   tab$diseased[2,1]*(1-z.bar)^2 + 
                   tab$diseased[1,2]*(0-z.bar)^2 )
  t.npv <- numerator/denominator
  p.value <- 1-pchisq(t.npv, df=1)  
  npv <- c(npv.1, npv.2, diff.npv, t.npv, p.value)
  # results
  method <- "generalized score statistic (gs)"
  results <- list(ppv,npv,method)
  names(results) <- c("ppv","npv","method")
  names(results$ppv) <- c("test1","test2","diff","test.statistic","p.value")
  names(results$npv) <- c("test1","test2","diff","test.statistic","p.value")
  return(results)
}


# --------------------------------------------------------
# pv.wgs
# --------------------------------------------------------
#' @export
pv.wgs <- function(tab) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  acc <- acc.paired(tab)
  ## ppv
  ppv.1 <- acc$Test1$ppv["est"]; ppv.2 <- acc$Test2$ppv["est"]
  names(ppv.1) <- NULL; names(ppv.2) <- NULL
  diff.ppv <- ppv.2-ppv.1; names(diff.ppv) <- NULL
  ppv.pooled <- (tab$diseased[1,1]*2 + tab$diseased[1,2] + tab$diseased[2,1]) /
    (tab$diseased[1,3] + tab$non.diseased[1,3] + tab$diseased[3,1] + tab$non.diseased[3,1])
  numerator <- diff.ppv**2
  c.p.ppv <- (tab$diseased[1,1]*(1-ppv.pooled)**2 + tab$non.diseased[1,1]*(ppv.pooled**2)) /  
    (tab$diseased[1,3] + tab$non.diseased[1,3] + tab$diseased[3,1] + tab$non.diseased[3,1]) 
  denominator <- (ppv.pooled*(1-ppv.pooled) - 2*c.p.ppv) * 
    (( 1/ (tab$diseased[1,3] + tab$non.diseased[1,3])) +
       ( 1/ (tab$diseased[3,1] + tab$non.diseased[3,1]))   )
  t.ppv <- numerator/denominator
  p.value <- 1-pchisq(t.ppv, df=1)  
  ppv <- c(ppv.1, ppv.2, diff.ppv, t.ppv, p.value)
  ## npv
  npv.1 <- acc$Test1$npv["est"]; npv.2 <- acc$Test2$npv["est"]
  names(npv.1) <- NULL; names(npv.2) <- NULL  
  diff.npv <- npv.2-npv.1; names(diff.npv) <- NULL  
  npv.pooled <- (tab$non.diseased[2,2]*2 + tab$non.diseased[1,2] + tab$non.diseased[2,1]) /
    (tab$diseased[2,3] + tab$non.diseased[2,3] + tab$diseased[3,2] + tab$non.diseased[3,2])
  numerator <- diff.npv**2
  c.p.npv <- (tab$diseased[2,2]*(npv.pooled)**2 + tab$non.diseased[2,2]*(1-npv.pooled)**2) /  
    (tab$diseased[2,3] + tab$non.diseased[2,3] + tab$diseased[3,2] + tab$non.diseased[3,2]) 
  denominator <- (npv.pooled*(1-npv.pooled) - 2*c.p.npv) * 
    (( 1/ (tab$diseased[2,3] + tab$non.diseased[2,3])) +
       ( 1/ (tab$diseased[3,2] + tab$non.diseased[3,2])))
  t.npv <- numerator/denominator
  p.value <- 1-pchisq(t.npv, df=1)  
  npv <- c(npv.1, npv.2, diff.npv, t.npv, p.value)  
  # results
  method <- "weighted generalized score statistic (wgs)"
  results <- list(ppv,npv,method)
  names(results) <- c("ppv","npv","method")
  names(results$ppv) <- c("test1","test2","diff","test.statistic","p.value")
  names(results$npv) <- c("test1","test2","diff","test.statistic","p.value")
  return(results)
}


# --------------------------------------------------------
# pv.rpv
# --------------------------------------------------------
#' @export
pv.rpv <- function(tab, alpha) {
  # check arguments
  if (missing(tab)) stop("Table is missing.")
  if (!(inherits(x=tab, what="tab.paired", which=F))) 
    stop("Table must be of class 'tab.paired'")
  if (missing(alpha)) alpha <- 0.05
  # pre-processing 
  N <-  tab$non.diseased[3,3] + tab$diseased[3,3]
  p1 <- tab$non.diseased[1,1] / N
  p2 <- tab$non.diseased[1,2] / N
  p3 <- tab$non.diseased[2,1] / N
  p4 <- tab$non.diseased[2,2] / N
  p5 <- tab$diseased[1,1] / N
  p6 <- tab$diseased[1,2] / N
  p7 <- tab$diseased[2,1] / N
  p8 <- tab$diseased[2,2] / N
  acc <- acc.paired(tab)
  # rppv
  ppv.1 <- acc$Test1$ppv["est"]; ppv.2 <- acc$Test2$ppv["est"]
  names(ppv.1) <- NULL; names(ppv.2) <- NULL
  rel.ppv <- ppv.2/ppv.1; names(rel.ppv) <- NULL
  sigma2.p <- (1/((p5+p7)*(p5+p6))) *
    (p6*(1-ppv.1) + p5*(ppv.1-ppv.2) +
       + 2*(p7+p3)*ppv.2*ppv.1 + p7*(1-3*ppv.2)  )
  se.log.rel.ppv <- sqrt(sigma2.p/N)
  lcl <- exp(log(rel.ppv) - qnorm(1-alpha/2)*se.log.rel.ppv)
  ucl <- exp(log(rel.ppv) + qnorm(1-alpha/2)*se.log.rel.ppv)
  t.ppv <- log(rel.ppv) / se.log.rel.ppv
  p.value <- 2*pnorm(-abs(t.ppv))
  ppv <- c(ppv.1, ppv.2, rel.ppv, se.log.rel.ppv, lcl, ucl, t.ppv, p.value)
  # rnpv
  npv.1 <- acc$Test1$npv["est"]; npv.2 <- acc$Test2$npv["est"]
  names(npv.1) <- NULL; names(npv.2) <- NULL  
  rel.npv <- npv.2/npv.1; names(rel.ppv) <- NULL
  sigma2.n <- (1/((p2+p4)*(p3+p4))) *
    ( npv.1*(-p3+p4-2*(p4+p8)*npv.2) + 
        (p2+p3) - npv.2*(p2-p4) )
  se.log.rel.npv <- sqrt(sigma2.n/N)
  lcl <- exp(log(rel.npv) - qnorm(1-alpha/2)*se.log.rel.npv)
  ucl <- exp(log(rel.npv) + qnorm(1-alpha/2)*se.log.rel.npv)
  t.npv <- log(rel.npv) / se.log.rel.npv
  p.value <- 2*pnorm(-abs(t.npv))
  npv <- c(npv.1, npv.2, rel.npv, se.log.rel.npv, lcl, ucl, t.npv, p.value)
  sigma.pn <- 
    (((p1+p2)*p6)/((p5+p6)*(p1+p2+p5+p6)*(p2+p4+p6+p8))) +
    (((p6+p8)*p2)/((p2+p4)*(p1+p2+p5+p6)*(p2+p4+p6+p8))) +
    (((p1+p3)*p7)/((p5+p7)*(p1+p3+p5+p7)*(p3+p4+p7+p8))) +
    (((p7+p8)*p3)/((p3+p4)*(p1+p3+p5+p7)*(p3+p4+p7+p8)))
  Sigma <- matrix(c(sigma2.p, sigma.pn, sigma.pn, sigma2.n), ncol = 2,
                  dimnames = list(c("log.rppv", "log.rnpv"),
                                  c("log.rppv", "log.rnpv")))/N
  # results
  method <- "relative predictive values (rpv)"
  results <- list(ppv,npv,Sigma,method,alpha)
  names(results) <- c("ppv","npv","Sigma","method","alpha")
  names(results$ppv) <- c("test1","test2","rppv","se.log.rppv","lcl.rppv","ucl.rppv","test.statistic","p.value")
  names(results$npv) <- c("test1","test2","rnpv","se.log.rnpv","lcl.rnpv","ucl.rnpv","test.statistic","p.value")
  return(results)
}

# --------------------------------------------------------
# ellipse.pv.rpv
# --------------------------------------------------------
#' Elliptical joint confidence region for relative positive and
#' negative predictive value
#' 
#' @description Returns a 100(1-alpha)\% elliptical joint confidence region for the parameter
#' vector \{log(relative positive predictive value), log(relative negative predictive value)\}.
#' 
#' @usage ellipse.pv.rpv(x, alpha = 0.05, npoints = 100, exponentiate = FALSE)
#' 
#' @param x an object returned by the \code{pv.rpv} function.
#' @param alpha significance level alpha used to compute the 100(1-alpha)\% region. The default is 0.05, for a 95\% region.
#' @param npoints the number of points used in the ellipse. Default is 100.
#' @param exponentiate a logical value indicating whether or not to exponentiate the values for the centre
#' of the ellipse and for the the ellipsoidal outline. Defaults to FALSE.
#' 
#' @returns A list containing:
#' \item{centre}{the centre of the ellipse.}
#' \item{ellipse}{an \code{npoints} x 2 matrix with the x and y coordinates for
#' the ellipsoidal outline. Suitable for \code{plot}-ing.}
#' 
#' @references Moskowitz, C.S., and Pepe, M.S. (2006). Comparing the predictive values of diagnostic tests: sample size and analysis for paired study designs. \emph{Clin Trials}, 3(3):272-9.
#' 
#' @seealso \code{pv.rpv} and \code{ellipse::ellipse}.
#' @export
#' 
#' @examples
#' data(Paired1) # Hypothetical study data
#' ftable(Paired1)
#' paired.layout <- tab.paired(d=d, y1=y1, y2=y2, data=Paired1)
#' paired.layout 
#' rpv.results <- pv.rpv(paired.layout)
#' ellipse.data <- ellipse.pv.rpv(rpv.results)
#' if(interactive()){
#'   plot(ellipse.data$ellipse, type = "l", ylim = c(-0.4, 0.2), xlim = c(-0.2, 0.2))
#'   points(ellipse.data$centre[1], ellipse.data$centre[2], col = "red", pch = 19)
#'   abline(h = 0, v = 0, lty = 3)
#' }
#' 
ellipse.pv.rpv <- function(x, alpha = 0.05, npoints = 100, exponentiate = FALSE) {
  if (!x$method == "relative predictive values (rpv)")
    stop("x must be an object from 'pr.rpv()' function")
  centre <- c(log.rppv = log(x$ppv[["rppv"]]), 
              log.rnpv = log(x$npv[["rnpv"]]))
  Sigma <- x$Sigma
  ellipse <- ellipse::ellipse(x = Sigma , centre = centre, level = 1-alpha, npoints = npoints)
  ret <- list(centre = centre, ellipse = ellipse)
  if (isTRUE(exponentiate)) {
    ret <- lapply(ret, exp)
    names(ret$centre) <- sapply(names(ret$centre), function(x) gsub("log.", "", x))
    colnames(ret$ellipse) <- sapply(colnames(ret$ellipse), function(x) gsub("log.", "", x))
  }
  return(ret)
}
# --------------------------------------------------------
# End 
# --------------------------------------------------------

Try the DTComPair package in your browser

Any scripts or data that you put into this service are public.

DTComPair documentation built on Sept. 24, 2024, 5:08 p.m.