Nothing
# Improved KNN Imputation with Comprehensive Evaluation and Execution Time
#'
#' This function performs imputation using the K-Nearest Neighbors (KNN) algorithm and calculates various evaluation metrics including RMSE, MMAE, RRE, and Consistency Proportion Index (CPP) using different hierarchical clustering methods. It also records the execution time of the process.
#'
#' @param data0 The original dataset containing the response variable and features.
#' @param data.sample The dataset used for sampling, which may contain missing values.
#' @param data.copy A copy of the original dataset, used for comparison or validation.
#' @param mr Indices of the rows with missing values that need to be predicted.
#' @param km The number of clusters for k-means clustering.
#' @return A list containing:
#' \item{Xnew}{The imputed dataset.}
#' \item{RMSE}{The Root Mean Squared Error.}
#' \item{MMAE}{The Mean Absolute Error.}
#' \item{RRE}{The Relative Eelative Error.}
#' \item{CPP1}{The K-means clustering Consistency Proportion Index.}
#' \item{CPP2}{The Hierarchical Clustering Complete Linkage Consistency Proportion Index.}
#' \item{CPP3}{The Hierarchical Clustering Single Linkage Consistency Proportion Index.}
#' \item{CPP4}{The Hierarchical Clustering Average Linkage Consistency Proportion Index.}
#' \item{CPP5}{The Hierarchical Clustering Centroid linkage Consistency Proportion Index.}
#' \item{CPP6}{The Hierarchical Clustering Median Linkage Consistency Proportion Index.}
#' \item{CPP7}{The Hierarchical Clustering Ward's Method Consistency Proportion Index.}
#' \item{timeKNN}{The KNN algorithm execution time.}
#' @export
#'
#' @keywords imputation KNN
#' @importFrom DMwR2 knnImputation
#' @importFrom stats kmeans dist hclust cutree
KNN <- function(data0, data.sample, data.copy, mr, km) {
n <- nrow(data.sample); p <- ncol(data.sample)
# Record the execution time
timeKNN <- system.time({
# Perform KNN imputation
X0 <- data.frame(data.sample)
XKNN <- knnImputation(X0, k = 10, scale = TRUE, meth = "weighAvg") # library(DMwR)
XKNN <- data.matrix(XKNN)
# Calculate predicted and actual values
predicteds <- XKNN[mr, ]
actuals <- data.copy[mr]
# Calculate RMSE
RMSE <- sqrt(base::mean((actuals - predicteds)^2))
# Calculate MMAE
MMAE <- base::mean(abs(predicteds - actuals))
# Calculate RRE
RRE <- RMSE / (max(actuals) - min(actuals))
# K-means clustering
s <- scale(XKNN)
km <- kmeans(s, km)
I1 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I1[g, 1] <- g
}
I1[, 2] <- km$cluster
I1[, 3] <- data0[, p + 1]
CPP1 <- IndexCPP(I1)
# Hierarchical clustering
HCdata <- XKNN
distance <- dist(HCdata)
# Complete linkage
HCdata.hc <- hclust(distance)
HCdata.id <- cutree(HCdata.hc, 3)
I2 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I2[g, 1] <- g
}
I2[, 2] <- HCdata.id
I2[, 3] <- data0[, p + 1]
CPP2 <- IndexCPP(I2)
# Single linkage
HCdata.single <- hclust(distance, method = "single")
HCdatasingle.id <- cutree(HCdata.single, 3)
I3 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I3[g, 1] <- g
}
I3[, 2] <- HCdatasingle.id
I3[, 3] <- data0[, p + 1]
CPP3 <- IndexCPP(I3)
# Average linkage
HCdata.average <- hclust(distance, method = "average")
HCdataaverage.id <- cutree(HCdata.average, 3)
I4 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I4[g, 1] <- g
}
I4[, 2] <- HCdataaverage.id
I4[, 3] <- data0[, p + 1]
CPP4 <- IndexCPP(I4)
# Centroid linkage
HCdata.centroid <- hclust(distance, method = "centroid")
HCdatacentroid.id <- cutree(HCdata.centroid, 3)
I5 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I5[g, 1] <- g
}
I5[, 2] <- HCdatacentroid.id
I5[, 3] <- data0[, p + 1]
CPP5 <- IndexCPP(I5)
# Median linkage
HCdata.median <- hclust(distance, method = "median")
HCdatamedian.id <- cutree(HCdata.median, 3)
I6 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I6[g, 1] <- g
}
I6[, 2] <- HCdatamedian.id
I6[, 3] <- data0[, p + 1]
CPP6 <- IndexCPP(I6)
# Ward's method
HCdata.ward <- hclust(distance, method = "ward.D")
HCdataward.id <- cutree(HCdata.ward, 3)
I7 <- matrix(0, nrow = n, ncol = 3)
for (g in 1:n) {
I7[g, 1] <- g
}
I7[, 2] <- HCdataward.id
I7[, 3] <- data0[, p + 1]
CPP7 <- IndexCPP(I7)
})
return(list(Xnew=XKNN,RMSE = RMSE, MMAE = MMAE, RRE = RRE, CPP1 = CPP1, CPP2 = CPP2, CPP3 = CPP3, CPP4 = CPP4, CPP5 = CPP5, CPP6 = CPP6, CPP7 = CPP7,timeKNN = timeKNN))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.