Nothing
## ----include = FALSE----------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.width = 7, fig.height = 5
)
## ----setup, echo = FALSE------------------------------------------------------
library(DUToolkit)
## ----calc_peak----------------------------------------------------------------
# define inputs
tmin <- min(psa_data$Intervention_1[, 1]) # minimum simulation time
tmax <- max(psa_data$Intervention_1[, 1]) # maximum simulation time
Dt <- c(rep(750, length(tmin:tmax))) # decision threshold vector
Dt_max <- TRUE # indicates the threshold values are maximums
## find peak values
peak_values_list <- get_max_min_values(psa_data, tmin, tmax, Dt_max)
head(peak_values_list$Baseline)
## ----gen_den, out.width='100%'------------------------------------------------
# define single threshold value for the peak
D <- 750
# calculate risk measure
risk_measures_list <- calculate_risk(psa_data, tmin, tmax, Dt, Dt_max)
# generate density plots
density_plots <- plot_density(
peak_values_list, D,
Dt_max, risk_measures_list
)
## example plot
density_plots$Intervention_1
## ----cust_den, out.width='100%'-----------------------------------------------
# customize plots
## add fixed x/y-axis limits and change the label of the x-axis
density_plots <- lapply(density_plots, function(x) {
x + ggplot2::ylim(0, 0.002) + ggplot2::xlim(0, 4500) +
ggplot2::labs(x = "Hospital demand at peak")
})
## remove subtitle and caption
density_plots <- lapply(density_plots, function(x) {
x + ggplot2::labs(subtitle = NULL, caption = NULL)
})
## example plot
density_plots$Intervention_1
## ----calc_peak_risk-----------------------------------------------------------
# calculate risk measures at peak values
peak_risk <- calculate_max_min_risk(peak_values_list, D, Dt_max)
# generate risk table dataframe
peak_risk_table <- tabulate_risk(peak_risk, n_s = length(peak_risk))
peak_risk_table
## ----calc_peak_probs----------------------------------------------------------
# define vector of threshold values
Dp <- c(750, 1000, 2000)
# calculate probability that peak value is > specified threshold values
peak_probs <- calculate_threshold_probs(peak_values_list, Dp, Dt_max)
peak_probs$Baseline
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.