Nothing
testMMD <- function(n.iter) {
if(requireNamespace("kernlab", quietly = TRUE)) {
for(i in 1:n.iter) {
set.seed(i)
X1 <- mvtnorm::rmvnorm(100, sigma = matrix(0.2, 10, 10) + diag(0.8, 10, 10),
mean = runif(10, -2, 2))
X2 <- mvtnorm::rmvnorm(100, mean = runif(10, -2, 2),
sigma = matrix(0.5, 10, 10) + diag(0.5, 10, 10))
set.seed(i)
res.kmmd <- kernlab::kmmd(X1, X2)
res.MMD <- DataSimilarity::MMD(X1, as.data.frame(X2), n.perm = 0, seed = i)
res.MMD.perm <- DataSimilarity::MMD(X1, as.data.frame(X2), n.perm = 10,
seed = i)
set.seed(i)
res.kmmd.a <- kernlab::kmmd(X1, X2, asymptotic = TRUE)
res.MMD.a <- DataSimilarity::MMD(X1, as.data.frame(X2), n.perm = 0,
asymptotic = TRUE, seed = i)
res.MMD.perm.a <- DataSimilarity::MMD(X1, as.data.frame(X2), n.perm = 10,
asymptotic = TRUE, seed = i)
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.MMD, 11)
testthat::expect_named(res.MMD, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.perm, 11)
testthat::expect_named(res.MMD.perm, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.a, 11)
testthat::expect_named(res.MMD.a, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.perm.a, 11)
testthat::expect_named(res.MMD.perm.a, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
# check p values in [0,1]
testthat::expect_lte(res.MMD.perm$p.value, 1)
testthat::expect_gte(res.MMD.perm$p.value, 0)
testthat::expect_lte(res.MMD.perm.a$p.value, 1)
testthat::expect_gte(res.MMD.perm.a$p.value, 0)
# check approx. p value is NA
testthat::expect_true(is.na(res.MMD$p.value))
testthat::expect_true(is.na(res.MMD.a$p.value))
# statistic is not NA
testthat::expect_false(is.na(res.MMD$statistic))
testthat::expect_false(is.na(res.MMD.perm$statistic))
testthat::expect_false(is.na(res.MMD.a$statistic))
testthat::expect_false(is.na(res.MMD.perm.a$statistic))
# output should be numeric
testthat::expect_s3_class(res.MMD, "htest")
testthat::expect_s3_class(res.MMD.perm, "htest")
testthat::expect_s3_class(res.MMD.a, "htest")
testthat::expect_s3_class(res.MMD.perm.a, "htest")
})
testthat::test_that("output values", {
# check test statistic values
testthat::expect_equal(res.MMD$statistic,
kernlab::mmdstats(res.kmmd)[1],
check.attributes = FALSE)
testthat::expect_equal(res.MMD.perm$statistic,
kernlab::mmdstats(res.kmmd)[1],
check.attributes = FALSE)
testthat::expect_equal(res.MMD.a$statistic,
kernlab::mmdstats(res.kmmd.a)[1],
check.attributes = FALSE)
testthat::expect_equal(res.MMD.perm.a$statistic,
kernlab::mmdstats(res.kmmd.a)[1],
check.attributes = FALSE)
})
res.MMD.1 <- DataSimilarity::MMD(X1[, 1, drop = FALSE],
as.data.frame(X2)[, 1, drop = FALSE],
n.perm = 0, seed = i)
res.MMD.perm.1 <- DataSimilarity::MMD(X1[, 1, drop = FALSE],
as.data.frame(X2)[, 1, drop = FALSE],
n.perm = 3, seed = i)
res.MMD.a.1 <- DataSimilarity::MMD(X1[, 1, drop = FALSE],
as.data.frame(X2)[, 1, drop = FALSE],
n.perm = 0, asymptotic = TRUE, seed = i)
res.MMD.perm.a.1 <- DataSimilarity::MMD(X1[, 1, drop = FALSE],
as.data.frame(X2)[, 1, drop = FALSE],
n.perm = 3, asymptotic = TRUE,
seed = i)
testthat::test_that("output type", {
# check length and names of output
testthat::expect_length(res.MMD.1, 11)
testthat::expect_named(res.MMD.1, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.perm.1, 11)
testthat::expect_named(res.MMD.perm.1, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.a.1, 11)
testthat::expect_named(res.MMD.a.1, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
testthat::expect_length(res.MMD.perm.a.1, 11)
testthat::expect_named(res.MMD.perm.a.1, c("statistic", "p.value", "estimate",
"alternative", "method", "data.name",
"H0", "asymp.H0", "kernel.fun",
"Rademacher.bound", "asymp.bound"))
# check p values in [0,1]
testthat::expect_lte(res.MMD.perm.1$p.value, 1)
testthat::expect_gte(res.MMD.perm.1$p.value, 0)
testthat::expect_lte(res.MMD.perm.a.1$p.value, 1)
testthat::expect_gte(res.MMD.perm.a.1$p.value, 0)
# check approx. p value is NA
testthat::expect_true(is.na(res.MMD.1$p.value))
testthat::expect_true(is.na(res.MMD.a.1$p.value))
# statistic is not NA
testthat::expect_false(is.na(res.MMD.1$statistic))
testthat::expect_false(is.na(res.MMD.perm.1$statistic))
testthat::expect_false(is.na(res.MMD.a.1$statistic))
testthat::expect_false(is.na(res.MMD.perm.a.1$statistic))
# output should be numeric
testthat::expect_s3_class(res.MMD.1, "htest")
testthat::expect_s3_class(res.MMD.perm.1, "htest")
testthat::expect_s3_class(res.MMD.a.1, "htest")
testthat::expect_s3_class(res.MMD.perm.a.1, "htest")
})
}
}
}
set.seed(0305)
testMMD(1)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.