Description Usage Arguments Details Examples
View source: R/plot_functions_main.R
Plot the net benefit curves from a decision_curve object or many decision_curve objects
1 2 3 4 5 | plot_decision_curve(x, curve.names, cost.benefit.axis = TRUE,
n.cost.benefits = 6, cost.benefits, standardize = TRUE,
confidence.intervals, col, lty, lwd = 2, xlim, ylim, xlab, ylab,
cost.benefit.xlab, legend.position = c("topright", "right", "bottomright",
"bottom", "bottomleft", "left", "topleft", "top", "none"), ...)
|
x |
'decision_curve' object to plot or a list of 'decision_curve' objects. Assumes output from function 'decision_curve' |
curve.names |
vector of names to use when plotting legends. |
cost.benefit.axis |
logical (default TRUE) indicating whether to print an additional x-axis showing relative cost:benefit ratios in addition to risk thresholds. |
n.cost.benefits |
number of cost:benefit ratios to print if cost.benefit.axis = TRUE (default n.cost.benefit = 6). |
cost.benefits |
Character vector of the form c("c1:b1", "c2:b2", ..., "cn:bn") with integers ci, bi corresponding to specific cost:benefit ratios to print. Default allows the function to calculate these automatically. |
standardize |
logical (default TRUE) indicating whether to use the standardized net benefit (NB/disease prevalence) or not. |
confidence.intervals |
logical indicating whether to plot confidence intervals. |
col |
vector of color names to be used in plotting corresponding to the 'predictors' given. Default colors will be chosen from rainbow(..., v = .8). See details for more information on plot parameters. |
lty |
vector of linetypes. |
lwd |
vector of linewidths. |
xlim |
vector giving c(min, max) of x-axis. Defaults to c(min(thresholds), max(thresholds)). |
ylim |
vector giving c(min, max) of y-axis. |
xlab |
label of main x-axis. |
ylab |
label of y-axis. |
cost.benefit.xlab |
label of cost:benefit ratio axis. |
legend.position |
character vector giving position of legend. Options are "topright" (default), "right", "bottomright", "bottom", "bottomleft", "left", "topleft", "top", or "none". |
... |
other options directly send to plot() |
When k decision_curve objects are input, the first k elements of col, lty, lwd ... correspond to the curves provided. The next two elements (..., k+1, k+2) correspond to the attributes of the 'all' and 'none' curves. See below for an example.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 | data(dcaData)
set.seed(123)
baseline.model <- decision_curve(Cancer~Age + Female + Smokes,
data = dcaData,
thresholds = seq(0, .4, by = .005),
bootstraps = 10)
#plot using the defaults
plot_decision_curve(baseline.model, curve.names = "baseline model")
set.seed(123)
full.model <- decision_curve(Cancer~Age + Female + Smokes + Marker1 + Marker2,
data = dcaData,
thresholds = seq(0, .4, by = .005),
bootstraps = 10)
# for lwd, the first two positions correspond to the decision curves, then 'all' and 'none'
plot_decision_curve( list(baseline.model, full.model),
curve.names = c("Baseline model", "Full model"),
col = c("blue", "red"),
lty = c(1,2),
lwd = c(3,2, 2, 1),
legend.position = "bottomright")
plot_decision_curve( list(baseline.model, full.model),
curve.names = c("Baseline model", "Full model"),
col = c("blue", "red"),
confidence.intervals = FALSE, #remove confidence intervals
cost.benefit.axis = FALSE, #remove cost benefit axis
legend.position = "none") #remove the legend
#Set specific cost:benefit ratios.
plot_decision_curve( list(baseline.model, full.model),
curve.names = c("Baseline model", "Full model"),
col = c("blue", "red"),
cost.benefits = c("1:1000", "1:4", "1:9", "2:3", "1:3"),
legend.position = "bottomright")
#Plot net benefit instead of standardize net benefit.
plot_decision_curve( list(baseline.model, full.model),
curve.names = c("Baseline model", "Full model"),
col = c("blue", "red"),
ylim = c(-0.05, 0.15), #set ylim
lty = c(2,1),
standardize = FALSE, #plot Net benefit instead of standardized net benefit
legend.position = "topright")
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.