Nothing
#' @importFrom stats as.formula model.frame na.omit predict prop.test pt var weighted.mean t.test quantile
#' @importFrom utils data setTxtProgressBar txtProgressBar
NULL
#' Create list for experimental data
#' @description
#' create list object of experimental data for easy data processing
#'
#' @param response.formula formula for response equation of binary outcome
#' variable and covariates
#' @param treat.var string for binary treatment variable
#' @param compl.var string for complier variable
#' @param exp.data `data.frame` of experimental variable
#' @param weights observation weights
#' @param cluster clustering variable
#' @param ID identifier variable
#'
#' @return list of processed dataset
#' @keywords internal
expcall <- function(response.formula,
treat.var,
compl.var,
exp.data,
weights = NULL,
cluster = NULL,
ID = NULL)
{
if (!is.null(ID)){
rownames(exp.data) <- exp.data[, ID]
}
if (!is.null(weights)){
weights <- exp.data[, weights]
}
if (!is.null(cluster)){
clustervar<-exp.data[, cluster]
} else {clustervar <- NULL}
response.formula <- as.formula(response.formula)
variables <- unique(c(all.vars(response.formula),
treat.var,
compl.var))
newdata <- na.omit(exp.data[, variables])
responsevar <- variables[1]
covariates <- variables[-1]
.formula <- as.formula(paste0(paste0(responsevar, " ~", treat.var, " + ",
compl.var, " + "),
paste0(covariates, collapse = " + ")))
expmf <- model.frame(.formula, data = newdata)
expl<-list(exp_data = expmf,
response_formula = response.formula,
treat_var = treat.var,
compl_var = compl.var,
type = "Experiment")
return(expl)
}
#' Create list for population data
#' @description
#' create list object of population data for easy data processing
#'
#' @param response.formula formula for response equation of binary outcome
#' variable and covariates
#' @param compl.var string for complier variable
#' @param pop.data `data.frame` of experimental variable
#' @param weights observation weights
#' @param cluster clustering variable
#' @param ID identifier variable
#' @param treat.var string for treatmet variable
#' @param patt logical for patt, subsetting population treated observations
#' @return list of processed dataset
#' @keywords internal
popcall <- function(response.formula,
compl.var,
treat.var,
pop.data,
weights = NULL,
cluster = NULL,
ID = NULL,
patt = TRUE)
{
if (patt){
pop.data$Treat <- pop.data[,treat.var]
pop.data <- pop.data[which(pop.data$Treat==1),]
}
if (!is.null(ID)){
rownames(pop.data) <- pop.data[,ID]
}
if (!is.null(weights)){
weights <- pop.data[,weights]
}
if (!is.null(cluster)){
clustervar <- pop.data[,cluster]
} else {clustervar <- NULL}
response.formula <- as.formula(response.formula)
variables <- unique(c(all.vars(response.formula),
compl.var))
newdata <- na.omit(pop.data[, variables])
responsevar <- variables[1]
covariates <- variables[-1]
.formula <- as.formula(paste0(paste0(responsevar," ~",
compl.var, " + "),
paste0(covariates,collapse = " + ")))
popmf <- model.frame(.formula, data = newdata)
popl<-list(pop_data = popmf,
response_formula = response.formula,
compl_var = compl.var,
weights = weights,
cluster = clustervar,
type = "Population")
return(popl)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.